English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2506556      線上人數 : 210
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61045


    題名: 利用台北市相關資料建立緊急救護決策模式及預後預測模型
    Establish an emergency ambulance decision-making and prognostic prediction model - Case study of Taipei City
    作者: 饒孝先
    Rau, Hsiao-Hsien
    貢獻者: 醫學資訊研究所
    邱泓文
    關鍵詞: 緊急救護;資源管理;層級分析法;決策模式
    Emergency Medical Services;Resources Management;Analytical Hierarchy Process;Decision Model
    日期: 2017-06-23
    上傳時間: 2021-11-18 09:35:22 (UTC+8)
    摘要: 到院前緊急救護(EMS)是人們面對事故時的第一道防線。其目的是為了確保病人在到達醫院前的適當治療和運輸。EMS的職責包括現場處理,運輸過程中的病人護理, 以及在進入指定設施之前的急救。正因為如此, 如何在最短的時間內將病人送往最合適的醫院也是其中一個重要的問題。緊急醫療救護法規定救護技術員(EMT)應將病人從事故地點運送到附近的適當醫療機構。然而,”就近且適當為”的標準並不十分明確。到目前為止,EMT往往是遵照家屬指定,或送往最近,或是大規模的醫院。有時,家屬對交通狀況或醫院設施的不正確判斷,如床位數或支援病人的能力,將導致緊急救援黃金小時的延誤,EMS品質下降。

    本研究的目的是讓EMT人員透過匹配病人和醫院的屬性來決定一個最合適的醫院。患者的屬性包括檢傷分類、嚴重程度和生命徵象。醫院的屬性包括在勤醫師數量、特定設備數量、床位數、是否為急救責任醫院等,本研究將利用這些屬性構建演算法, 並計算出最合適的醫院。

    本研究首先運用文獻蒐集法找出可能的決策因素, 並與專家討論, 讓他們描述急診醫療服務的問題,也請他們審視這些因素是否適當,或建議其他可能的決策因素,在第二階段, 本研究使用問卷調查, 以瞭解EMT人員對於每個決策參數的態度,並根據調查結果的問卷調查的結果取出同意程度較高的,並依內容加以分類,以確認問題架構,之後召開專家會議進行審視,並運用層級分析法(AHP),要求專家對各因素的重要性進行比較,並據此生成決策模型。在第三階段,我們利用重要性-績效分析(IPA)來瞭解EMT的想法與實際實施之間的差距,也將歷史救護資料與健保資料庫結合,分析EMT的送醫行為特徵,並分析人的預後,找出各因素的重要性。

    本研究發現EMT認為他們會考慮將急救病人送往他們負責地區的醫院,這一因素在我們的公式中權重最高,其次是嚴重程度(檢傷分類)和是否為責任醫院,是否壅塞以及醫院的緊急救護能力分級。同時,根據歷史救護資料分析的結果,本研究發現約50%的急診病人被送往醫學中心,大多數病人可以在5分鐘內到達醫院,但我們也發現,送往醫學中心和地區醫院的病人的預後沒有顯著差異,我們也發現病人的年齡,交通時間和緊急呼叫的原因對預後有很大影響。

    根據上述結果,本研究認為EMT需要一個由多種因素組成的最合適的醫院, 本研究認為這些因素可以包含病患的年齡、求救原因以及醫院的距離和醫院的急救能量做出適當的決定。本研究也認為個人健康記錄在EMT作決定時能夠提供一些資訊做參考,如年齡、性別、就診記錄和診斷、食品/藥物過敏記錄都可以説明急診急救人員更明確的病情和作出好的決定,2015年以來,臺灣已經實施健康存摺,如果可以將其使用在急診醫療服務,相信可以提高EMS的整體品質。
    BACKGROUND: The emergency medical services (EMS) is the first responder when people face accidents. Its purpose is to ensure the proper treatment and transportation of emergency patients before arriving at the hospital. The responsibilities of EMS include on-site treatment, patient care during transportation, and emergency care prior to admission to the designated facility. Because of the above, choosing the most appropriate hospital to send the emergency patient in the shortest time is also one of the essential issues. In the Emergency Medical Services Act of Taiwan, it stipulates Emergency Medical Technicians (EMTs) should transport the patient from the emergency site to the appropriate medical care institution in the vicinity. However, the criteria used to decide the appropriate medical care institutions for patients are not very clear. Currently, the transportation is often decided by EMTs or families. Sometimes, incorrect judgments on traffic conditions or hospital facilities, such as regarding the number of beds or ability to support patients, result in delayed emergency rescue and reduced EMS quality.

    OBJECTIVE: The purpose of this research is to help EMTs choose the most appropriate hospital by matching patient and hospital attributes. Patient attributes include triage degree, seriousness degree, and vital signs. Hospital attributes include number of on-call doctors, special equipment, number of beds, emergency medical liability, etc. This research uses these attributes to build algorithms and calculate the most appropriate hospital.

    METHOD: First, this study used a literature review to find the possible decision factors and then discussed with experts to let them describe the problem of EMS. In addition, it used their suggestions to add some new candidate factors and edit the factors obtained by the literature review. After discussing with experts, in the second step, this study used a questionnaire survey to determine EMTs’ attitudes on every candidate factor, and based on the result of the questionnaire survey, a structure of the decision factors was designed. An expert meeting was also held to check the result, and the Analytic Hierarchy Process (AHP) analytics method was used to ask experts to compare the importance of every factor one by one and to generate the decision model. In the third stage, we used importance–performance analysis (IPA) to determine the gap between EMT''s thinking and actual implementation. In addition, this study also integrated EMS record data and the National Health Insurance (NHI) research database to analyze EMTs’ behaviors related to emergency patient transportation and the prognosis of emergency patients and find the importance of every factor.

    RESULTS: This study found EMTs usually send emergency patients to the hospitals in their area of responsibility first. This factor had the highest weighting in our formula followed by level of severity (emergency triage result), whether the hospital is in responsibility area, the emergency-critical medical care ability of the hospital, and crowdedness. Moreover, based on the result of the historical EMS report data analytics, this study found that about 50% of emergency patients are sent to medical centers, and most cases can arrive at a hospital within 5 mins. However, we also found a lack of significant difference of prognosis between the patients sent to medical centers and district hospitals, and we also found that patient’s age, traffic time, and reason for emergency call are highly influential on prognosis.

    CONCLUSIONS: Based on the result above, this study suggests that EMTs need to choose the most appropriate hospital by considering multiple factors. This study suggests that EMTs can refer to patient age, reason for the emergency call, and hospital distance and capacity to make a suitable decision. This study also proposes that personal health records are helpful for EMTs when they make decisions. Information, such as age, gender, hospital visit records and diagnoses, and food/medicine allergy records, can help EMTs understand emergency patients’ situations and make good decisions. In 2015, Taiwan implemented “My Health Bank.” If it can be used it in the EMS, it can improve the EMS quality.
    描述: 博士
    指導教授:邱泓文
    委員:祝國忠
    委員:黃衍文
    委員:張顯洋
    委員:簡志誠
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML112檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋