English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2547582      線上人數 : 199
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/61011


    題名: 結合序列、結構和物理化學特性之HIV-1蛋白酶切割位點預測研究
    Prediction of HIV-1 Protease Cleavage Site Using a Combination of Sequence, Structural, and Physicochemical Features
    作者: 翁嘉昕
    Singh, Onkar
    貢獻者: 醫學資訊研究所
    蘇家玉
    關鍵詞: HIV-1蛋白酶;切割位點;序列特徵;結構特徵;物理化學性質;偽胺基酸組成;機器學習
    HIV-1 protease;cleavage sites;sequence features;structural features;physicochemical properties;pseudo amino acid composition;machine learning.
    日期: 2016
    上傳時間: 2021-11-11 13:55:27 (UTC+8)
    摘要: 背景
    人類免疫缺陷病毒1型 (human immunodeficiency virus type 1, HIV-1) 是由於天冬氨酸蛋白酶的變化而發生的疾病。在免疫缺陷綜合症 (acquired immune deficiency syndrome, AIDS) 中,此酶也是其中一個病原體,由此可見天冬氨酸蛋白酶為一個重要的酶。HIV-1蛋白酶抑制劑的開發可以幫助理解抑制HIV-1的特異性,進而開發對抗愛滋病之藥物。然後,在進行HIV-1蛋白酶切割位點的實驗鑑定方法大多為耗時且需要大量人力。因此,使用計算方法進行預測切割位點已成為初步快速篩選之方法。
    方法
    在本研究中,我們提出利用序列、結構和物理化學特性三類生物特徵,並結合不同機器學習算法來預測切割位點。接著使用逐步羅吉斯迴歸選擇具有識別判斷的特性。在特徵表示上,被選擇之生物特徵由不同編碼方式來計分,並輸入到決策樹、羅吉斯迴歸與類神經網路模型中。此外,本研究在資料分割過程,將資料分為三份以進行預測切割位點的評估,並採用前人研究中所提出之四個資料集作為預測結果評估。
    結果和結論
    實驗結果顯示結合序列、結構和物理化學特性之組合方式於進行HIV-1蛋白酶切割位點比只有使用單一特徵類型更佳準確。此外在逐步特性選擇的加入能有效識別生物特徵的特異性。另外,在類神經網路的結果顯示比決策樹與羅吉斯迴歸模型有較佳的顯著結果。最後,本研究以三份資料切割評估方法下,AUC可達到0.815~0.995及具有80.0%~97.4%的準確率。
    Background
    The human immunodeficiency virus type 1 (HIV-1) aspartic protease is an important enzyme owing to its imperative part in viral development and a causative agent of deadliest disease known as acquired immune deficiency syndrome (AIDS). Development of HIV-1 protease inhibitors can help understand the specificity of substrates, which can restrain the replication of HIV-1, thus antagonize AIDS. However, experimental methods in identification of HIV-1 protease cleavage sites are generally time-consuming and labor-intensive. Therefore, using computational methods to predict cleavage sites has become highly desirable.
    Results
    In this study, we propose a prediction method in which sequence, structural, and physicochemical features are incorporated in various machine-learning algorithms. Then, a bidirectional stepwise selection algorithm is incorporated in feature selection to identify discriminative features. Further, only the selected features are calculated by various encoding schemes and used as input for decision trees, logistic regression, and artificial neural networks. Moreover, a more rigorous three-way data split procedure is applied to evaluate the objective performance of cleavage site prediction. Four benchmark datasets used in previous studies are used to evaluate the predictive performance.
    Conclusion
    Experiment results showed that combinations of sequence, structure, and physicochemical performed better than single feature type for identification of HIV-1 protease cleavage sites. In addition, incorporation of stepwise feature selection is effective to identify interpretable biological features to depict specificity of the substrates. Moreover, artificial neural networks perform significantly better than the other two classifiers. Finally, the proposed method achieved 80.0%~97.4% in accuracy and 0.815~0.995 AUC evaluated by independent test sets in a three-way data split procedure.
    Keywords: HIV-1 protease, cleavage sites, sequence features, structural features, physicochemical properties, pseudo amino acid composition, machine learning.
    描述: 碩士
    指導教授:蘇家玉
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML75檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋