English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2524017      線上人數 : 199
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/58780


    題名: 資料探勘應用於麻醉術後噁心嘔吐之相關因素分析與預測
    Applying Data Mining Techniques to Retrieve the Features of related factors of postoperative nausea and vomiting
    作者: 王芷葳
    Wang, Jhih-Wei
    貢獻者: 醫務管理學系碩士在職專班
    張偉斌
    關鍵詞: 術後噁心嘔吐;資料探勘;預測模型
    Postoperative nausea and vomiting;Data mining techniques;Predictive model
    日期: 2019-07-19
    上傳時間: 2020-02-25 10:56:13 (UTC+8)
    摘要: 前言:聚焦於麻醉品質之管理議題,運用麻醉手術後症狀檢視麻醉品質,其中手術後噁心嘔吐(Postoperative nausea and vomiting,簡稱PONV)是接受麻醉手術後常見的症狀,其發生率約為20-30%,高危險族群發生率高達70-80%。因此,本研究目的是找出術後噁心嘔吐的相關性危險因子,並建立高危險族群的預測模型,找出較適合的預測模型輔助臨床人員鑑別PONV高危險族群。

    方法:針對新北市某準醫學中心醫院之574筆個案資料進行分析與預測,先利用SPSS 18.0之卡方檢定與羅吉斯迴歸找出術後噁心嘔吐的相關因子與影響因子,再採用R Studio1.1.456版系統介面執行R語言3.5.3版建立預測模型,以五折疊交叉驗證進行平均,計算出準確率、特異度、敏感度、陽性預測值、陰性預測值、F1值,作為演算法預測能力評估。

    結果:經本研究結果發現,性別、吸菸狀況、飲酒狀況、術後暈眩或喉嚨痛、手術類型、術中麻醉藥物均與術後噁心嘔吐有顯著相關。在影響程度方面,女性有PONV的風險是男性的2.978倍。術後有喉嚨痛者有PONV的風險是無喉嚨痛者的2.305倍。術後有暈眩者有PONV的風險是術後無暈眩者的2.943倍。手術類型之減肥手術有PONV的風險是骨折復位手術的4.528倍。術中有使用類鴉片藥物有PONV的風險是無使用的1.518倍。在預測模型的準確率上,羅吉斯迴歸為64.52%、決策樹為71.83%、支持向量器為75.65%、類神經網路為75.30%。支持向量器與類神經網路較決策樹與羅吉斯迴歸有較高的預測準確率。

    結論:依本研究結果顯示,性別、術後症狀、手術類型與術中麻醉藥物對於術後噁心嘔吐的影響程度也是不可輕忽的,這些都是未來我們需要注意有術後噁心嘔吐的高危險族群。資料探勘模型之決策樹、支持向量器與類神經網路的預測效果均達70%以上,具有可接受的預測力效果,而四種模型比較起來,支持向量器與類神經網路具有較高的預測能力。
    Introduction: Focus on the management of anesthesia quality, use the symptoms of anesthesia to check the quality of anesthesia. Postoperative nausea and vomiting (PONV) is a common symptom after anesthesia. The incidence rate is about 20-30. %, the incidence of high-risk groups is as high as 70-80%. Therefore, the purpose of this study was to identify the relevant risk factors for postoperative nausea and vomiting, and to establish a predictive model of high-risk groups to find a more suitable predictive model to assist the trampoline personnel in identifying PONV high-risk groups.

    Method: According to the analysis and prediction of 574 cases of a quasi-medical center hospital in New Taipei City, the correlation factors and influencing factors of postoperative nausea and vomiting were found by using the SPSS 18.0 chi-square test and Logistic regression, and then using R Studio1.1.456 and R language version 3.5.3 to establish a predictive model, and averages with five-fold cross-validation to calculate accuracy, specificity, sensitivity, Positive Predictive Value, Negative Predictive Value, and F1 value. .

    Result: According to the results of this study, gender, smoking, drinking, postoperative dizziness , postoperative sore throat, type of surgery, and intraoperative anesthesia were significantly associated with postoperative nausea and vomiting. In terms of the degree of influence, the risk of women having PONV is 2.978 times that of men. The risk of PONV in patients with sore throat after surgery was 2.305 times that of those without sore throat. The risk of PONV in patients with dizziness after surgery was 2.943 times that of postoperative dizziness. Bariatric surgery has a risk of PONV of 4.528 times that of fracture reduction surgery. Intraoperative use of opioids has a risk of PONV of 1.518 times that of no use. In the accuracy of the prediction model, the logistic regression is 64.52%, the decision tree is 71.83%, the support vector is 75.65%, and the neural network is 75.30%. Support vector machines and neural networks have higher prediction accuracy than decision tree and Logistic regression.

    Conclusions: According to the results of this study, gender, postoperative symptoms, type of surgery, and the extent of intraoperative anesthetics for postoperative nausea and vomiting are not negligible. These are high-risk groups in the future that we need to pay attention to PONV. The prediction model of the data mining model, the support vector machine and the neural network prediction effect are all above 70%, with acceptable predictive power effects. Compared with the four models, the support vector and the neural network are higher predictive ability.
    描述: 碩士
    指導教授:張偉斌
    委員:吳忠敏
    委員:簡文山
    資料類型: thesis
    顯示於類別:[醫務管理學系暨研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML79檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋