English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2538980      線上人數 : 276
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/58750


    題名: 近紅外光譜技術於偵測花腹鯖魚肉中組織胺之研究
    Determination of Histamine in Blue Mackerel (Scomber australasicus) Using Near Infrared Spectroscopy
    作者: 章心慈
    Chang, Hsin-Tze
    貢獻者: 食品安全碩士學位學程
    莊永坤
    關鍵詞: 近紅外光譜;組織胺;鯖魚;定性;化學計量學
    near infrared spectroscopy;histamine;mackerel;chemometrics
    日期: 2019-06-08
    上傳時間: 2020-02-24 11:54:56 (UTC+8)
    摘要: 組織胺中毒為國際上常見的魚類食品中毒事件,而魚肉中組織胺的現有檢測方法,如液相層析、螢光光譜法等,皆需破壞樣品,且有較複雜的前處理步驟,不利於大規模且全面的檢驗。因此本研究的目的是應用近紅外光譜技術 (near infrared spectroscopy, NIRS) 結合多變量分析,開發出一種非破壞性快速檢測花腹鯖魚肉中組織胺的方法。本研究以類神經網路 (artificial neural network,ANN) 所建立之定性模型,對樣品中的組織胺含量是否符合臺灣所規範的限量標準 (≦200 ppm)進行判別,其正確率皆可達85%以上;而在對樣品是否達組織胺的毒性劑量 (>500 ppm) 進行判別時,也得到了不錯的結果。另以FOSS NIRS 6500型分光光度計測得新鮮花腹鯖魚片的光譜值,與液相層析串聯式質譜儀(liquid chromatography/tandem mass spectrometer, LC-MS/MS) 分析所得的組織胺數據,透過多重線性迴歸法 (multiple linear regression, MLR) 建立定量的校正模型。在低濃度樣品部分 (≦500 ppm),結果顯示,魚肉側光譜模型的定量極限約為3 ppm,而表皮側光譜則為11 ppm;而在分析樣品中的組織胺含量是否符合臺灣所規範的限量標準 (≦200 ppm) 時,魚肉側光譜的檢量線適合範圍在9~200 ppm,而表皮側光譜則為 5~200 ppm;而在分析樣品中的組織胺含量是否達毒性劑量 (>500 ppm) 時,魚肉側與表皮側光譜的檢量線適合範圍皆在5~500 ppm。而高濃度樣品 (>500 ppm) 部分,以魚肉側光譜所建立的MLR模型效能最佳,其檢量線之相關係數為0.72, SECV為1012.41 ppm。本研究結果證實了近紅外光譜技術結合多變量分析法可以快速檢測花腹鯖魚肉中的組織胺含量。
    Histamine fish poisoning, also called scombroid poisoning, is one of the most common types of food poisoning caused by fish consumption throughout the world. A variety of methods are available for determination of histamine in foods, including high performance liquid chromatography (HPLC) and spectrofluorometry. These methods, which are all destructive and require time-consuming sample preparation, are not suitable for large-scale inspection. The objective of this study was therefore to develop a rapid and non-destructive method for determination of histamine in blue mackerel (Scomber Australasicus) by using near infrared spectroscopy integrated with multivariate methods. In the present study, artificial neural network (ANN) was used to identify whether histamine concentrations in mackerel samples were higher than the limit (200 ppm) in Taiwan. The prediction accuracy of the ANN results were all above 85%. In addition, ANN models also showed good results for identification of the toxic level of histamine (500 ppm). The calibration models for quantification were built by multiple linear regression (MLR) through combining spectra of fresh mackerel fillets measured by FOSS NIRS 6500 spectrophotometer and histamine reference values determined by liquid chromatography/tandem mass spectrometer (LC-MS/MS). The limit of quantification (LOQ) of MLR calibration models built by the spectra of the flesh side of blue mackerel was 3 ppm, and which built by the spectra of the skin side was 11 ppm. Moreover, when determining whether histamine concentrations in mackerel samples were higher than the limit in Taiwan (200 ppm), the proper range of the calibration models built by the spectra of the flesh side of blue mackerel was from 9 to 200 ppm, while the skin side model ranged from 5 to 200 ppm. Further, when determining whether histamine concentrations exceed the toxic level (500 ppm), the proper ranges of the calibration models were 5 to 500 ppm in both flesh and skin side models. The MLR models showed the best result in second derivative spectra of the flesh side of blue mackerel which had histamine concentrations higher than 500 ppm, with RCV of 0.72 and SECV of 1012.41 ppm. In summary, integration of NIR spectroscopy and multivariate methods provides a useful tool for determination of histamine in blue mackerel (Scomber australasicus).
    描述: 碩士
    指導教授:莊永坤
    委員:陳世銘
    委員:陳奕廷
    資料類型: thesis
    顯示於類別:[食品安全碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML58檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋