English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2537248      線上人數 : 224
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/58633


    題名: 使用機器學習於大腸內視鏡影像結合人工特徵與機器特徵判別息肉惡性程度
    Using colorectal endoscopic images in machine learning combined with artificial features and non-artificial features to determine the degree of polyposis
    作者: 葉宇軒
    Yeh, Yu-Hsuan
    貢獻者: 醫學資訊研究所
    陳俊璋
    關鍵詞: 大腸息肉;機器學習;深度學習
    Colorectal polyps;Machine learning;deep learning
    日期: 2019-06-27
    上傳時間: 2020-02-11 11:41:08 (UTC+8)
    摘要: 根據衛福部國健署公布的台灣癌症登記報告,2014至2016年癌症死亡人數以大腸癌1萬9335人最多,大腸癌長年以來是台灣癌症死亡榜首。大腸息肉是直腸內常見的增生性細胞,如未經治療切除有機會發展成直腸癌,大腸息肉分為四種,增生性息肉、贅生性息肉、發炎性息肉以及誤生息肉。在臨床上,要確定息肉是哪種類型通常都必須做切片檢查,此研究希望透過影像特徵分析結合機器學習,快速的從大腸鏡的影像中直接判別息肉種類,以減少病患因為開刀傷口所引起的併發症。在機器學習方面,我們有使用人工特徵提取來進行分類模型的建造,也有使用機器特徵當中的深度學習卷積神經網路,來比較這兩者所建造出分類模型差異。我們的影像來自台北醫學大學附設醫院消化內科大腸鏡患者的臨床資料,我們總共蒐集了1881位大腸鏡臨床患者的影像,共有1991張影像,其中增生性息肉有1053張、腺瘤狀息肉及腺癌共938張。我們在人工特徵值的Gabor配合21種機器學習中,以Ensemble Subspace KNN達到了最高93.2%準確率。而在機器特徵深度學習Resnet-101方面我們取得98.4%的更高準確率。
    According to the Taiwan Cancer Registration Report published by Taiwan health promotion administration ministry of health and welfare, the number of new cancers in 2014 was the highest in colorectal cancer, with a total of 19,576 people. In the cancer ranking, colorectal cancer ranked first in cancer for the ninth time. A colorectal polyp is a polyp occurring on the lining of the colon or rectum. Untreated colorectal polyps can develop into colorectal cancer. And to determine which type of polyp is usually necessary to do a biopsy. Colorectal polyps are divided into four types, hyperplastic polyps, neoplastic polyps, inflammatory polyps, and misdiagnosed polyps. It is more difficult to determine the type of polyp in the polyp of patients with colorectal black lesions in the clinic. This study hopes to quickly identify polyp types from colonoscopy images through image feature analysis combined with machine learning. This is used to reduce the complications of the patient because of surgery. In machine learning, we use artificial feature extraction to build the classification model, and also use deep learning among non-artificial features to compare the difference between the two models. Our images were obtained from the clinical data of patients with gastroenterology in the Department of Gastroenterology, Taipei Medical University. There were 1991 images, including 1053 hyperplastic polyps, 938 adenomatous polyps and adenocarcinomas. We use the artificial eigenvalue Gabor with 21 machine learning algorithms, of which Ensemble Subspace KNN has 93.2% with the highest accuracy. In the deep learning of machine features, we achieved a higher accuracy rate, and achieved a higher accuracy rate of 98.4% in Resnet-101.
    描述: 碩士
    指導教授:陳俊璋
    委員:邱泓文
    委員:羅崇銘
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML80檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋