English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2541312      線上人數 : 186
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/58195


    題名: 藉由海量資料視覺化疾病軌跡
    Visualizing Disease Trajectories Using Big Data
    作者: 黃芝瑋
    Huang, Chih-Wei
    關鍵詞: 視覺化分析;資料視覺化;桑基圖;慢性腎臟病;臺灣十大癌症;系統易用性量表
    Visualize Analytics;Data Visualization;Chronic Kidney Disease;Ten Leading Cancers in Taiwan;Sankey-style Diagram;System Usability Scale
    日期: 2016-06-03
    上傳時間: 2019-10-21 12:20:27 (UTC+8)
    摘要: 現今的電子病歷中包含大量、豐富且重要的病人資訊,對於臨床醫師、研究人員及政策制定者來說,從龐大且複雜的病歷資料中萃取出有意義的資訊之能力變得日益重要,故本研究之目的即為發展出一套巨量疾病資料視覺化分析方法,找出某一慢性疾病與其共病及共病群組在時間軸上呈現之關聯,並觀察疾病演化與發展軌跡。本研究利用健保資料庫百萬歸人檔作為資料來源,發展出一套標準化的疾病資料篩選、分析及視覺化分析方法、流程、系統工具及應用程式介面,最終的視覺化透過桑基圖(Sankey diagram)與時間軸結合之形式呈現,展示出某一特定慢性疾病與其共病因子及各階段疾病狀態隨著時間演化的情形。在研究結果中,我們呈現了1998-2011年之14,567位慢性腎臟病病人族群與1997-2012年之24,221位臺灣十大癌症病人族群之疾病演化,並透過系統易用性量表評估不同使用者族群對於系統使用之學習性與易用性程度,研究結果顯示,研究人員與學生較臨床醫師在學習性方面更具正面態度,而使用者在易用性與系統整合方面皆表示滿意。此研究展示了一個創新的疾病軌跡視覺化的方法學與應用工具,不僅能協助研究人員探索複雜的疾病及其多樣共病因子與預後之時序性特徵與關聯;對於臨床醫師而言可協助診斷病情,並藉由互動式視覺化系統與病人共同進行治療決策,提升醫療照護品質;在臨床醫學教育方面則能利用多維視角將疾病多元化、立體化,並透過視覺化呈現不同疾病的演進與複雜的共病問題;政策制訂者可以巨量資料視覺化之成果為基礎,制訂出對醫療環境有實質效益之法規,並能有效監測及改善疾病的預後。
    Background
    Electronic medical records (EMRs) contain vast amounts of data that is of great interest to physicians, clinical researchers, and medial policy makers. As the size, complexity, and accessibility of EMRs grow, the ability to extract meaningful information from them has become an increasingly important problem to solve.
    Objective
    The aim of this study is to analyze and visualize the comorbidity associated with chronic diseases. The study demonstrate diseases and their associations before and after a specific diagnosis in a time-evolutionary type visualization.
    Methods
    We develop a standardized data analysis and visual analysis process to support cohort study with a focus on a specific disease. We use an interactive divide-and-conquer approach to classify patients into relatively uniform within each group. It is a repetitive process enabling the user to divide the data into homogeneous subsets that can be visually examined, compared, and refined. The final visualization was driven by the transformed data, and user feedback direct to the corresponding operators which completed the repetitive process. The output results are shown in a Sankey diagram–style timeline, which is a particular kind of flow diagram for showing factors’ states and transitions over time.
    Results
    This study presents a visually rich, interactive web-based application that enables anyone to easily generate and study patient cohorts over time using EMR data. The resulting visualizations help uncover hidden structures in the data, compare differences between patient groups, determine critical factors that influence a particular disease, and help direct further analyses. We introduce and demonstrate our design with case studies using EMRs of 14,567 Chronic Kidney Disease (CKD) patients and 24,221 ten leading cancers patients. The system usability scale (SUS) is implemented to evaluate usability and learnability of different groups of user. The user study shows that researchers and students have more positive attitude than physicians in learnability; however, the users all are satisfying with system integration and system usability.
    Discussion
    This study represents a novel visualization approach for temporal patterns of polymorbidities associated with any complex disease and its outcomes. We proposed this Sankey-style diagram as a promising method for visualizing complex diseases and exploring the effect of comorbidities on outcomes in a time-evolution style. This type of visualization may help clinicians foresee possible outcomes of complex diseases by considering comorbidities that the patients have developed. The visualization methods in this study can reveal useful knowledge about the particular disease cohort and the trajectories of the disease over time.
    Conclusion
    We developed a visualization tool based on a Sankey-style diagram that can represent the comorbidity and progression of a specific disease over time. This tool has the potential to help clinicians when deciding on the management of treatment or procedure. We believe that the disease visualization of comorbidities and outcomes can lead us to a better understanding of underlying pathogenesis. Efforts in this direction will eventually aid in prediction and prevention of the disease, personalization of diagnosis and treatment, as well as the participation of patients in our healthcare system.
    描述: 博士
    指導教授-李友專
    委員-許明暉
    委員-簡文山
    委員-張資昊
    委員-謝忠和
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML71檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋