摘要: | Osteoarthritis (OA) poses a major clinical challenges owing to limited regenerative ability of diseased or traumatized chondrocytes in articular cartilage. Previous studies have determined the individual therapeutic efficacies of hyaluronic acid (HA) and platelet-rich plasma (PRP) on OA; however, the underlying mechanism is still lacking. Therefore, we investigated mechanistic approach of HA+PRP therapy on chondrocyte apoptosis in the IL-1β+TNF-α (I+T) treated in vitro OA model, in addition to in vivo anterior cruciate ligament transection (ACLT)-OA mice model. MTT assay showed an enhanced chondrocyte proliferation and viability in HA+PRP-treated group, compared to I+T, I+T/HA, I+T/HA, I+T/HA+PRP groups. Further, HA+PRP also significantly suppressed ROS, apoptotic cleaved caspase-3 and PARP, p53 and p21 and MMP-1; whereas, cell cycle modulatory proteins including p-ERK, cyclin B1, D1, and E2 were upregulated. The sub-G1 population and TUNEL assay confirmed the higher abundance of healthy chondrocytes in HA+PRP group. A significantly decreased ARS staining in HA+PRP group was also noted, indicating reduced cartilaginous matrix mineralization compared to other groups.
Otherwise, the bone marrow stem cells (BMSCs) has recently also been recognized as a superior alternative treatment for OA. However, study of primary BMSCs-mediated chondrogenesis is difficult due to progressive cellular aging and replicative senescence. To obtain a therapeutic cell population for OA, BMSCs were immortalized by human papilloma virus (HPV)-16 E6/E7 along with mCherry luciferase (mCL), a gene marker for non-invasive imaging, and designated as iBMSCs-mCL. Next, their cell morphology, population doubling time (PDT) and colony forming ability (CFU) were evaluated. Furthermore, pluripotency and immunophenotypic markers were investigated. To deduce therapeutic ability, iBMSCs-mCL were intra-articularly injected into right knee of anterior cruciate ligament transaction (ACLT)-OA mice model and tracked through non-invasive bioluminescence imaging. Cell morphology of iBMSCs-mCL was similar to parental BMSCs. PDT and CFU ability of iBMSCs-mCLs were significantly increased. Pluripotency and immunophenotypic markers were highly expressed in iBMSC-mCL. Long-term survival and tri-lineage differentiation particularly chondrogenic potential of iBMSCs-mCL were also demonstrated in vitro and then in vivo which was monitored through non-invasive imaging. Intensive bioluminescent signals in iBMSCs-mCL administered knee-joint indicated a marked in vivo survival and proliferation of iBMSCs-mCL. Immunohistochemical staining for type II collagen (IHC of Col II) and alcian blue & safranin o staining of proteoglycans also corroborated cartilage regeneration by iBMSCs-mCL.
Conclusively, compared to HA or PRP, the combined HA+PRP might be a promising therapy for articular cartilage regeneration in osteoarthritic pathology, possibly via augmented anti-inflammatory, anti-oxidative chondrocyte proliferation and inhibted MMP-1 activity and matrix calcification. Besides, iBMSCs-mCL maintains stemness and in vivo cartilage regeneration potential suggesting a promising avenue for development of OA therapeutics. |