English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2519552      線上人數 : 196
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/56844


    題名: 基於群眾意見關鍵詞向量之社群輿論分析研究
    A Public Opinion Keyword Vector for Social Sentiment Analysis Research
    作者: 李芳儀
    Lee, Fang-Yi
    貢獻者: 大數據科技及管理研究所
    關鍵詞: 輿情分析;社群多媒體;群眾意見;讀者情緒
    Sentiment analysis;Social multimedia;Public opinion;Reader emotion
    日期: 2018
    上傳時間: 2018-12-25 09:43:43 (UTC+8)
    摘要: 在這個網路普及的時代,網際網路已經成為人們分享與取得知識的重要來源,且隨著社群多媒體的蓬勃發展,任何網際網路使用者都能夠輕鬆地對一事件發表意見與看法,這種便利性雖然讓網際網路成為了解事件的重要知識寶庫,但超載的事件資訊卻也加重了使用者了解事件的負擔。有鑑於此,本研究基於文字探勘技術分析社群多媒體中的群眾意見,有別於以往的研究,本研究是從分析短文本(short text)主題對讀者產生的情緒,進而彙整成群眾之輿論與觀感。本研究中,我們提出了群眾意見關鍵詞向量(Public Opinion Keyword Embeddings, POKE)用以表達每一則來自社群多媒體的短文本,並且與多項單純貝氏分類器(Multinomial Naive Bayes classifier)、決策樹(Decision tree)、邏輯斯迴歸(Logistic regression)以及社群短文字分類常用方法LibShortText做比較。從實驗結果顯示,本研究方法POKE在整體的效能評估中皆獲得最好的效能表現,即代表本研究方法能有效地表達短文本群眾意見的意涵,並結合視覺化分析方法進而更深入瞭解社群多媒體中的群眾意見。
    In the Internet era, online platforms are the most convenient means for people to share and retrieve knowledge. Social media enables users to easily post their opinions and perspectives regarding certain issues. Although this convenience lets the internet become a treasury of information, the overload also prevents user from understanding the entirety of various events. This research aims at using text mining techniques to explore public opinion contained in social media by analyzing the reader’s emotion towards pieces of short text. We propose Public Opinion Keyword Embedding (POKE) for the presentation of short texts from social media, and a vector space classifier for the categorization of opinions. We compared with Multinomial Naive Bayes classifier, Decision tree, Logistic regression and the common method which used for social media short text classification: LibShortText. The experimental results demonstrate that our method obtain the best performance in overall representation, it means that our method can effectively represent the semantics of short text public opinion. In addition, we combine a visualized analysis method for keywords that can provide a deeper understanding of opinions expressed on social media topics.
    描述: 碩士
    張詠淳
    Yung-Chun Chang
    資料類型: thesis
    顯示於類別:[大數據科技及管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1892檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋