English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2559853      線上人數 : 163
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/54042


    題名: 院內感染監控之商業智能系統建置
    A Novel Business Intelligence Model for Monitoring Nosocomial Infection
    作者: 李傳博
    Lee, Chuan-Po
    關鍵詞: 院內感染;視覺化;支持向量機;決策樹;healthcare-associated infection;visualization;support vector machines;decision tree
    日期: 2017-07-17
    上傳時間: 2018-11-16 09:30:55 (UTC+8)
    摘要: 背景:在一次 20mL生理食鹽水注射液污染 Ralstonia pickettii菌種,造成的院內感染案件中,我們發現類似的案例有可能因為臨床微生物醫檢師對報告資訊的不連貫,或是人員的工作輪替而遺漏了發現案件的機會,因此本研究以建立系統的方式,提供警示服務。
    方法:系統收集2013年 9月至 2015年 3月的細菌培養結果,期間共有 260,779份報告,陽性結果佔66,446份,平均每日118 ± 30份報告。統計每日菌種培養數平均值及標準差,設立各菌種的警示門檻為平均值加上 1.28標準差,然後排程程式每日自動統計培養數量與判斷是否超出門檻。對於超出警示值的菌種即以email寄發通知簡訊給細菌室及管染管控人員。資料使用Google chart做視覺化的網頁呈現,包括菌種每日培養數量趨勢圖、檢體分佈圖及病房分佈圖等。本研究也利用此系統建置的資料中,以 SAS Enterprise Miner High-Performance Data Mining 的 Support Vector Machines, SVM及 Decision tree 模型測試 6種院內感染常見菌種,評估是否可以預測院內感染的發生。
    結果:視覺化介面經問卷統計,評估使用者認為系統的實用性,在滿分 5分的標準中,得到平均 4.1分以上的成績。預測模型的測試結果在不同菌種間差異性很大,在 SVM模型中驗證組的靈敏度從20.4%~96.2%;Decision tree模型靈敏度則從25.0%~82.1%之間。
    結論:藉由程式自動化收集、彙整資料與視覺化的圖表趨勢呈現,使得醫院醫療照護相關感染的作業更有效率。彙整後的資料,也有機會使用於院內感染的預測。

    BACKGROUND: Recently, there was a healthcare-associated infection (HAI) event which induced by 20 ml injection normal saline contamination with Ralstonia pickettii in Taiwan. This event probably could not be discovered because laboratory staff were young or the staff were unfamiliar with the random bacterial appear trend. Therefore, we propose to develop a detection system that could efficiently summarize daily bacterial culture positive rate, and raise warning signals if there is any unusual high incidence.
    METHODS: Our system processes analytic data and proposes warnings in several steps. First, the baseline values and warning ranges were calculated by the average and standard deviation (S.D.), respectively, of daily bacteria culture positive counts from September 2013 to March 2015. The total, positive and daily report numbers were 260,779, 66,446 and 118±30, respectively. The warning threshold was set as average + 1.28 S.D. for each bacterium. The detection system was scheduled to run every day. It counts each bacterial report, aggregates a summary and determines which bacterial report numbers are over the threshold. Once the report numbers are higher than the threshold, the system will send an email to the laboratory and infection control staff. The monitoring user interface was designed with the Google chart web application. The designed interface presents visualization of the bacterial daily culture count trend, specimen distribution, and ward distribution. Two machine learning algorithms, support vector machines (SVM) and decision trees (DT), from SAS Enterprise Miner software were used to predict the occurrences of HAI. Six most commonly HAI related bacteria were discussed in the evaluation.
    RESULTS: The practicality of this visualization system was evaluated by an online questionnaire. The proposed infection detection system achieves an average score of 4.1 or more (in the score of 5 points). The sensitivity of the prediction models varies among different bacteria. In SVM model, the sensitivity ranges from 20.4% to 96.2%, and DT model ranges from 25.0% to 82.1%.
    CONCLUSION: This infection detection system provides automated data collection and summarization. It also provides data visualization as a chart view, which makes the management and prevention of the infection control more conveniently and efficiently.
    描述: 碩士
    指導教授-蘇家玉
    委員-羅崇銘
    委員-吳漢銘
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML242檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋