Taipei Medical University Institutional Repository:Item 987654321/53961
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 45069/58245 (77%)
Visitors : 2344549      Online Users : 387
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://libir.tmu.edu.tw/handle/987654321/53961


    Title: 生物醫學資訊在臨床泌尿學研究之建構及應用
    Development and Application of Biomedical Informatics in Clinical Urology Studies
    Authors: 曹智惟
    Tsao, Chih-Wei
    Keywords: 類神經網路;莢膜侵犯;前列腺腫瘤;磁振造影;葛里森評分;前列腺特異抗原;勃起功能障礙;牙周疾病;Artificial neural network;Capsule invasion;Prostate neoplasm;MRI;Gleason score;PSA;Erectile dysfunction;Periodontal disorder
    Date: 2014-07-17
    Issue Date: 2018-11-15 13:03:19 (UTC+8)
    Abstract: 論 文 摘 要

    論文名稱:生物醫學資訊在臨床泌尿學研究之建構及應用
    臺北醫學大學醫學資訊研究所
    研究生姓名:曹智惟
    畢業時間: 102 學年度第 2 學期
    指導教授:徐建業 臺北醫學大學醫學資訊研究所 教授

    目的:本篇論文的目的系運用生物資訊來建構一類神經網路模型,用於預測前列腺癌患者預備接受根除性前列腺切除手術之病理期別,以探討前列腺包膜被腫瘤細胞侵犯之可能性:另以生物資訊方法,來輔助臨床骨盆腔磁振造影診斷前列腺癌病理期別之準確性;同時我們也以處理龐大資料庫之原理,將臺灣健保資料庫作與男性勃起功能障礙相關因子之分析研究。

    方法:此回溯性研究包含了299 位接受恥骨後前列腺根除手術或機器手臂輔助式腹腔鏡前列腺根除手術之病患,利用患者手術前的臨床資料 (如年齡、肥胖度、血液前列腺特異抗原、肛門指診結果、經直腸前列腺超音波檢查結果及前列腺切片組織病理等等) 來建構一類神經網路預測模型用於預測其前列腺包膜被腫瘤細胞侵犯之機率:涵蓋94位前列腺癌接受根除手術之病患,利用血液前列腺特異抗原及葛里森評分,來增進骨盆腔磁振造影診斷術後前列腺癌病理期別之準確性;最後,我們利用台灣健保資料庫,隨機撈取5,105位勃起功能障礙之患者及10,210位對照男性,分析慢性牙周病與臨床勃起功能障礙之相關聯性。

    結果:類神經網路研究中,所建構之預測模型包含了 7 個預測因子 (輸入因子)。 測試結果發現其 ROC 曲線下之面積 (AUC) 是0.795,大於羅吉斯迴歸模型之 AUC (0.746)且有顯著統計差異. 亦遠大於平時應用於臨床預測模型 (Partin tables) 所得之AUC (0.695);臨床研究發現,在臨床期別二期的前列腺癌患者輔佐以葛里森評分,在臨床期別三期的病患以血液前列腺特異抗原,可大大提昇骨盆腔磁振造影來分析術後前列腺癌病理期別之準確性;在健保資料庫資料研究中,慢性牙周病與勃起功能障礙具有統計意義之關聯性,此關係在小於30歲及大於59歲的男性族群更為顯著,但在接受相關治療之患者則有較低之影響。

    結論:生物資訊包含建構之類神經網路預測模式針對前列腺癌患者提供較準確之病理期別的預測,及增進現今以骨盆腔磁振造影診斷術後前列腺癌病理期別之準確性,同時更能處理較大資料庫以利於臨床的研究分析及日後醫療方針的確立。

    Abstract

    Title of Thesis:Development and Application of Biomedical Informatics in Clinical Urology Studies

    Author:Chih-Wei Tsao
    Thesis advised by :Chien-Yeh Hsu
    Taipei Medical University,
    Graduate Institute of Biomedical Informatics

    Objective: We developed an artificial neural network (ANN) model to predict prostate cancer pathological staging more effectively than logistic regression (LR) and practice-based Partin tables; To improve the accuracy of MRI diagnosis of the final pathological stage in the current diagnosis process; ED and CPD have been reported to have similar risk factors and associated systemic conditions related to the impairment of endothelial function, the relationship between CPD and ED is unclear.

    Materials and methods: The study evaluated 299 patients undergoing radical prostatectomy. The results were intended to predict the pathological stage of prostate cancer (T2 or T3). The predictive ability of the ANN was compared with that of LR and validation of the 2007 Partin Tables estimated by the areas under the receiving operating characteristic curve (AUCs); 2nd study included 94 PCa patients receiving eMRI testing during pre-surgical evaluation and undergoing radical prostatectomy. These stage assessments as evaluated through the use of MRI were compared with the final specimen pathological stage after the patients underwent radical prostatectomy; Using a nationwide population-based dataset, we examined the association between ED and CPD, and assessed the effect of dental extraction (DE) on ED prevalence in different aged CPD populations in Taiwan.

    Results: The ANN overall outperformed LR overall significantly (0.795 ± 0.023 versus 0.746 ± 0.025, p = 0.016). Validation of the current Partin Tables in the subjects of our study was assessed, and the predictive capacity of the AUC for OCD was 0.695; In clinical stage T2 prostate cancer patients, the Gleason score significantly improved the discriminative ability of eMRI to successfully predict prostate cancer at the OCD stage. In cases of clinical stage T3 prostate cancer, accurate determination of PSA levels significantly improved eMRI predictive ability to assess ECE or SVI staging; We identified 5,105 patients with ED and randomly selected 10,210 patients as controls. 2,617 (17.09%) were diagnosed with CPD: 1,196 (23.43%) in the ED group and 1,421 (13.92%) in the control group. Patients with ED were more likely to have been diagnosed with prior CPD than controls (OR = 1.79, 95% CI = 1.64-1.96, p < 0.001). The association was much stronger in the populations aged less than 30 years (OR = 2.13, 95% CI = 1.23-3.70, p < 0.001) and more than 59 years (OR = 2.27, 95% CI = 1.99-2.59, p < 0.001)

    Conclusions: The bioinformatics including that ANN development for pathologic stage prediction, improvement of eMRI diagnosis accuracy and big data analysis for clinical treatment are practicable and powerful in the urology study field.
    Description: 博士
    指導教授-徐建業
    委員-查岱龍
    委員-于大雄
    委員-楊騰芳
    委員-張祐誠
    Data Type: thesis
    Appears in Collections:[ ] Dissertations/Theses

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML80View/Open


    All items in TMUIR are protected by copyright, with all rights reserved.


    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback