English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2525824      線上人數 : 222
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/53906


    題名: 應用類神經網路模型預測髖關節骨折一年後存活率
    Using artificial neural network models for predicting survival rate of hip fracture in elderly patients
    作者: 簡嘉良
    Chien, Chia-Liang
    關鍵詞: 類神經網路;髖關節骨折;存活預測;artificial neural network;hip fracture;survival prediction
    日期: 2013-06-14
    上傳時間: 2018-11-15 10:41:30 (UTC+8)
    摘要: 近年來由於工業化、生活型態的改變及醫學的進步,使得平均餘命增加,高齡族群已占總人口的7.1%。因應高齡人口的增加,骨質疏鬆所帶來的骨折風險也日益增加。而髖關節的骨折容易發生在骨質疏鬆的年老族群,且創傷後一年內的死亡率根據文獻的統計可高達20%至30%。

    自1980年代之後資料探勘技術已廣泛使用於醫學領域,其中應用類神經網路預測心肌梗塞、乳癌及大腸癌病人存活率更是有良好的表現。但是在預測髖關節骨折存活率方面仍少見相關研究及文獻。

    本研究的目的是建立一類神經網路模型來預測髖關節骨折手術後一年的存活率。利用年齡、性別、骨折型態、手術方式、住院天數、住院金額、手術醫師及其他內科病症,如糖尿病、高血壓、心臟病、腦血管意外、身心症、腎衰竭及阻塞性肺病等14項變數建立類神經網路預測模型,藉以預測髖關節骨折手術後一年存活率。

    本研究使用準確度、靈敏度、特異度以及接收者操作特徵曲線下面積等指標評估該預測模型效能,並與邏輯斯迴歸模型的預測效能做比較,藉以評估及證明類神經網路為預測髖關節骨折一年後存活率的良好決策支援工具。

    In the aging population society, osteoporosis is a popular issue due to the associated complications, like hip fracture which have 20% to 30% mortality rate one year after surgery.

    Data mining techniques have been used in many medical applications since 1980s. Artificial neural networks are considered good alternatives to conventional statistical methods for the prediction of myocardial infarction, breast and colorectal cancer patients’ survival. Otherwise, there are few applications for predicting survival rate in elderly patients with hip fracture.

    The purpose of this study is to establish a predictive model to assess the one-year survival rate in the treatment of older patients with hip fracture. All of the chosen cases are older than 65 years old with regular follow up for more 1 year and excluding carcinoma or high-energy trauma cases. The artificial neural network (ANN) models will be developed with 14 variables, like age, sex, fracture pattern, surgery, mental status, hospital days, cost, surgeon and medical conditions. Cases are randomly assigned to training and testing datasets.

    The performances of prediction models are evaluated according to parameters such as accuracy, sensitivity, specificity, and the area under receiver operating characteristic curve. Otherwise, the performances of the artificial neural network (ANN) models also compare with the performances of the logistic regression models. This study wants to prove this prediction system is a useful toll in the predicting survival rate in elderly patients with hip fracture.
    描述: 碩士
    指導教授-徐建業
    委員-邱泓文
    委員-張博論
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML119檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋