English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2532347      線上人數 : 242
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/53855


    題名: 運用類神經網路建立糖尿病性腎臟病變病患預測模型分析
    Designing and analysis an Artificial Neural Network Model for the Prediction of Diabetic Nephropathy
    作者: 胡瑞蘭
    Hu, Jui-Lan
    貢獻者: 醫學資訊研究所
    關鍵詞: 糖尿病;糖尿病腎病變;類神經網路;預測模型;Diabetes Mellitus;Diabetic Nephropathy;Artificial Neural Network;Predict model
    日期: 2012-06-18
    上傳時間: 2018-11-15 09:35:37 (UTC+8)
    摘要: 糖尿病(DM)是在二十世紀的最常見的慢性疾病之一。目前台灣大約有120萬患病人口,發病率與流行率逐年上升,糖尿病腎病佔終末期腎臟病(ESRD)的新病例為35.9%,並於2010年,與終末期糖尿病患者的治療費用超過30億美元。此外,糖尿病腎病與心血管疾病的發病率和死亡率非常高的風險。目標:使用台灣北部某醫學中心資料,以類神經網路技術,建立糖尿病病患腎臟病變的預測模型。方法:收集台灣北部某醫院中心2008至2011年就診診斷為糖尿病病人(ICD-9為250.00),兩年間新診斷為糖尿病腎臟病變(ICD-9為250.40、250.42)的個案共7873筆,使用隨機抽樣出1000筆,分成訓練組500筆,測試組500筆;經文獻回顧,臨床血液檢驗資料,找出12項與糖尿病腎臟病變有關的項目納入分析,使用類神經網路與邏輯斯迴歸分析,分別以5項(達顯著差異)、7項(包含無顯著差異)的變數為輸入變項,輸入變項有性別、年齡、抽菸史、高血壓病史、BMI、glucose、creatinine、BUN、HDL、LDL、CHOL、HbA1C,得到腎臟病變診斷(ICD-9為250.40、250.42)輸出變項的方式進行測試。結果:以全部12項輸入變項建立的類神經網路預測模型成效最佳(p<0.05),ROC曲線下的面積 0.925、準確率 0.916、敏感度 0.838、特異度 0.926較邏輯斯迴歸ROC曲線下的面積 0.916、準確率 0.894、敏感度 0.86、特異度 0.838為佳。結論:類神經網路所建立糖尿病腎臟病變的預測模型優於邏輯斯迴歸,可輔助糖尿病病患,在就診時得知兩年內腎臟病變的可能性,及早作臨床醫療上的治療準備,積極回診,也減少個人疾病認知錯誤而不回診的因素,進而延緩疾病進程,降低醫療上的不必要開銷與浪費。

    Diabetes Mellitus (DM) is one of the most common chronic diseases in the twentieth century. The incidence and prevalence increased steadily over decades, and there were approximate 120 million cases in the population of Taiwan up to now. Diabetic nephropathy accounts for 35.9% of new cases of end-stage renal disease (ESRD),and in 2010, the cost for treatment of diabetic patients with ESRD was in excess of $30 billion in Taiwan. Moreover, diabetic nephropathy is associated with a very high risk of cardiovascular morbidity and mortality. An artificial neural network( ANN) was established for the prediction of development of diabetic nephropathy in diabetic patients. From Jan. 2008 to Dec. 2011, a total 7873 patients diagnosed as having diabetes mellitus at one hospital in Taiwan were retrospectively reviewed. Patients enrolled in the study included diagnosis Diabetes patients’ within two years of kidney disease. We have chosen a total number of 1000 patients and distinguish between the training sample of 500 patients and test samples of 500 patients. Variables examined were age, BMI, hypertension, blood glucose, BUN, creatinine, HDL, LDL, HbA1C and total cholesterol. An ANN model was developed by using two randomly selected training and testing sets for predicting diabetic nephropathy. We used logistic regression(LR) compared with the ANN model. The ANN model has good performance with overall accuracy of 91.6% and the area under the receiver operating characteristics (ROC) curve is 0.925( p-value < 0.05) better than logistic regression . Diabetic nephropathy can be easily and accurately predicted by the ANN model. By using the model, the clinicians can find out the patients at high risk of developing diabetic nephropathy and delay the occurance.
    描述: 碩士
    指導教授-徐建業
    共同指導教授-龍藉泉
    委員-邱泓文
    委員-簡文山
    委員-黃衍文
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML67檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋