English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2531782      線上人數 : 251
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/53746


    題名: 以支持向量機分析HLA分型與各紅球血型系統異體抗體的關聯性
    作者: 張志昇
    Chang, Jhy-Sheng
    關鍵詞: 紅血球異體抗體;HLA分型;資料探勘;支持向量機;RBC allo antibody;HLA typing;data mining;SVM
    日期: 2013-07-19
    上傳時間: 2018-11-14 13:01:28 (UTC+8)
    摘要: 目的:
    人類各紅血球血型系統產生不同異體抗體的變異性,常因各種族而不同,和紅血球的抗原比率較無關係。依文獻資料顯示,產生紅血球異體抗體的免疫能力和個體的人類組織相容性抗原(Human Leukocyte Antigen , HLA)分型有極大的相關性。臺大醫院HLA資料庫及紅血球異體抗體資料庫均為經常性輸血所衍生的資料庫。因此本研究希望能利用資料探戡技術來分析這兩組資料庫,希望能找出不同HLA分型產生各種紅血球血型系統異體抗體的關聯性。

    方法:
    本研究根據臺大醫院人類組織抗原HLA資料庫,與相關的紅血球抗體鑑定結果資料庫,在資料處理部分進行重新編整HLA及紅血球異體抗體資料庫的格式。接下來運用資料探勘中之支持向量機(support vector machines, SVM)技術分析HLA Class I 和Class II分型與紅血球異體抗體關聯性,資料探勘過程包括資料權重選取、SVM參數調整及重要特徵選取等步驟。此外本研究也進一步利用HLA分型資料來預測腫瘤相關疾病,如肝性疾病hepatic disease、骨髓性血癌myeloid leukemia、淋巴性血癌lymphoblastic leukemia。希望能利用資料探勘工具和機器學習技術來分析HLA class I, class II和紅血球異體抗體間的關聯性。

    結論與展望:
    實驗結果證實利用HLA class I和class II分型來預測紅血球血型系統所產生異體抗體,以SVM資料探工具評估可達到91.8% ~ 99.7% 的準確率。此外以HLA分析預測腫瘤相關疾病之準確率亦可達55.9%~96.2%。研究中以特徵選擇演算法選擇出與紅血球異體抗體高度相關之HLA分析與臨床專業知識符合,顯示以資料探勘分析能找出有鑑別力的特徵。利用HLA資料庫與紅血球異體抗體資料庫進行資料探勘可以找出台灣地區HLA和產生各種紅血球血型系統異體抗體的相關性,進而可預測輸注紅血球產生異體抗體的機率,並提供預防性輸血(prophylactic transfusion ) 的功用。

    Background:
    Human blood group systems cause different red blood cell (RBC) alloantibodies due to different ethnic people instead of blood group antigen diversity. Many studies have shown that the immune potent of alloantibodies in blood group systems and human leukocyte antigen (HLA) phenotypes have close relationship. However, it is time-consuming and labor-intensive to manually map HLA phenotypes to red blood alloantibodies. Using data mining techniques to analyze HLA typing and predict alloantibodies or diseases has become highly desirable.

    Method:
    This study extracts and organizes datasets from HLA phenotypes and RBC alloantibody databank in Taiwan Blood Foundation. After that, we incorporate a support vector machine package, LibSVM, to analyze the correlation among HLA class I, class II, and RBC allo-immune. Data mining techniques are applied for weight adjustment, parameter tuning and feature selection. Moreover, we also use HLA phenotypes to predict diseases, such as hepatic disease, myeloid leukemia, lymphoblastic leukemia.

    Results and conclusion:
    Experiment results demonstrate that the proposed method achieves 91.8%~99.7% overall accuracy by support vector machine tools for alloantibody prediction. Moreover, it also attains overall accuracy 55.9%~96.2% in predicting related diseases. Based on data mining techniques, we can also identify discriminative features to predict RBC allo-immune alloantibody. In summary, the proposed method can be utilized to analyze correlation between HLA and blood group system alloantibody databank and provide useful insights to prophylactic transfusion in Taiwan.
    描述: 碩士
    指導教授-蘇家玉
    共同指導教授-李元綺
    委員-李宏謨
    委員-邱泓文
    委員-林東燦
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML181檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋