Taipei Medical University Institutional Repository:Item 987654321/471
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 45422/58598 (78%)
Visitors : 2529359      Online Users : 194
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://libir.tmu.edu.tw/handle/987654321/471


    Title: Peroxisomal proliferator-activated receptor-alpha protects renal tubular cells from doxorubicin-induced apoptosis. Mol Pharmacol.
    Authors: 許永和
    Lin H;Hsu YH
    Contributors: 醫學系內科學科
    Date: 2007
    Issue Date: 2009-08-11 13:51:24 (UTC+8)
    Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a transcription factor and has been reported to inhibit cisplatin-mediated proximal tubule cell death. In addition, doxorubicin (Adriamycin)-induced nephrosis in rats is a commonly used experimental model for pharmacological studies of human chronic renal diseases. In this study, we investigated the protective effect of PPAR-alpha on doxorubicin-induced apoptosis and its detailed mechanism in NRK-52E cells and animal models. The mRNA level of PPAR-alpha was found to be reduced by doxorubicin treatment in NRK-52E cells. PPAR-alpha overexpression in NRK-52E cells significantly inhibited doxorubicin-induced apoptosis and the quantity of cleaved caspase-3. Endogenous prostacyclin (PGI(2)) augmentation, which has been reported to protect NRK-52E cells from doxorubicin-induced apoptosis, induced the translocation and activation of PPAR-alpha. The transformation of PPAR-alpha short interfering RNA was applied to silence the PPAR-alpha gene, which abolished the protective effect of PGI(2) augmentation in doxorubicin-treated cells. To confirm the protective role of PPAR-alpha in vivo, PPAR-alpha activator docosahexaenoic acid (DHA) was administered to doxorubicin-treated mice, and it has been shown to significantly reduce the doxorubicin-induced apoptotic cells in renal cortex. However, this protective effect of DHA did not exist in PPAR-alpha-deficient mice. In NRK-52E cells, the overexpression of PPAR-alpha elevated the activity of catalase and superoxide dismutase and inhibited doxorubicin-induced reactive oxygen species (ROS). PPAR-alpha overexpression also inhibited the doxorubicin-induced activity of nuclear factor-kappaB (NF-kappaB), which was associated with the interaction between PPAR-alpha and NF-kappaB p65 subunit as revealed in immunoprecipitation assays. Therefore, PPAR-alpha is capable of inhibiting doxorubicin-induced ROS and NF-kappaB activity and protecting NRK-52E cells from doxorubicin-induced apoptosis.
    Relation: Molecular Pharmacology.(72):1238-1245.
    Data Type: article
    Appears in Collections:[Department of Internal Medicine] Periodical Article

    Files in This Item:

    File Description SizeFormat
    162.pdf.481KbUnknown163View/Open
    全文.txt0KbText100View/Open
    摘要.pdf61KbAdobe PDF62View/Open


    All items in TMUIR are protected by copyright, with all rights reserved.


    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback