English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45069/58245 (77%)
造訪人次 : 2341560      線上人數 : 191
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/4527


    題名: 預測前列腺癌之病理期別-類神經網路模型之建構及分析
    Development and Validation of Artificial Neural Networks for the Prediction of Pathologic Stage in Prostate Cancer
    作者: 曹智惟
    Chih-Wei Tsao
    貢獻者: 醫學資訊研究所
    關鍵詞: 類神經網路
    前列腺癌
    包膜侵犯
    artificial neural network
    prostate cancer
    capsule invasion
    日期: 2009
    上傳時間: 2009-09-08 16:48:07 (UTC+8)
    摘要: 目的:本篇論文的目的系建構及分析一類神經網路模型,用於預測前列腺癌患者預備接受根除性前列腺切除手術之病理期別,以探討前列腺包膜被腫瘤細胞侵犯之可能性。 我們也將此一類神經網路模型之研究結果與傳統統計學之羅吉斯迴歸模型及臨床預測模型 (Partin tables) 作比較。

    方法:此回溯性研究包含了九年當中 124 位接受恥骨後前列腺根除手術或機器手臂輔助式腹腔鏡前列腺根除手術之病患,利用患者手術前的臨床資料 (如年齡、肥胖度、血液PSA檢驗、肛門指診結果、經直腸前列腺超音波檢查結果及前列腺切片組織病理等等) 來建構一類神經網路預測模型用於預測其前列腺包膜被腫瘤細胞侵犯之機率。 最後,我們利用 ROC 曲線及 ROC分析法對此一類神經網路模型之鑒別能力作分析,也將此分析結果與傳統統計學之羅吉斯迴歸模型及臨床預測模型 (Partin tables)作比較。

    結果:研究中,大約有 32.25% 之病患在接受前列腺根除手術之後發現包膜被腫瘤細胞侵犯,另67.74% 病患則無包膜侵犯情形。所建構之類神經網路預測模型包含了 7 個預測因子 (輸入因子)。 測試結果發現其 ROC 曲線下之面積 (AUC) 是0.795,大於羅吉斯迴歸模型之 AUC (0.746)且有顯著統計差異. 而將此研究包含之124位個案應用於臨床預測模型 (Partin tables) 所得之AUC (0.688) 亦遠小於類神經網路及羅吉斯迴歸預測模型。 但是,在幾個關鍵的臨界點上,類神經網路預測模型都有最佳之共存敏感度及特異度。

    結論:未來如果有更龐大更完整的資料庫以及更精確的運算模式,類神經網路預測模型的科技將可以對前列腺癌預接受前列腺根除手術患者之病理期別提供即時而準確的預測。
    Objective: An artificial neural network (ANN) was developed to predict the pathologic stage of prostate cancer more effectively than regression models based on the combined use of pelvic magnetic resonance imaging (pMRI), prostate specific antigen (PSA) and biopsy Gleason score in patients ongoing receiving radical prostatectomy (RP).

    Materials and methods: One hundred and twenty-four patients undergoing retropubic RP or robotic assisted LRP with pelvic lymphadenectomy were evaluated. An ANN was developed using two randomly selected training and validation sets for predicting pathologic stage. Predictive study variables included age, body mass index (BMI), preoperative serum PSA, pathology biopsy Gleason score 1 and Gleason score 2, transrectal ultrasound (TRUS) findings, and digital rectal examination (DRE). The predicted result was a pathological stage of prostate cancer (T2 or T3) after receiving radical surgery. The predicted ability of ANN was compared with those of logistic regression analysis and “Partin Tables” by area under the receiving operating characteristic curve (AUC) analysis.

    Results: Of the participants, 40 were prostate cancer with capsule invasion (32.25%) and 84 were prostate cancer without capsule invasion (67.74%). In this model, the hyperbolic and logistic functions were used as an activation function in the hidden and output layers respectively. The LR analysis showed that only PSA and Biopsy pathology Gleason score 1 of the independent variables had a statistically significant influence on prostate cancer with capsule invasion. The classification threshold for predicted values was optimally set to 0.2477. The overall accuracy rate of ANN was 65%, which is higher than that of LR (60%). As to the traditional evaluation tool of prostate cancer, MRI revealed relatively lower predictive ability to previous ANN and LR models. The ANN overall outperformed LR overall significantly (0.795±0.023 versus 0.746±0.025; p= 0.016). The ANN testing performed better than LR testing (0.735±0.051 versus 0.65±0.055; p = 0.093). Therefore, we applied each patient of the total data set (n = 124) to the Partin table, the performance of the clinical predictable model showed the AUC of 0.688. The clinically practicable model has worse performance of predictability than ANN and LR models.

    Conclusions: ANN was superior to logistic regression and Partin Tables to predict accurately final pathologic result of extracapsular invasion. Artificial neural network models can be developed and used to better predict final pathologic stage of extracapsular invasion when preoperative pathologic and clinical features are known.
    資料類型: thesis
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    摘要.doc28KbMicrosoft Word122檢視/開啟
    摘要.pdf70KbAdobe PDF254檢視/開啟
    摘要.ppt113KbMicrosoft Powerpoint199檢視/開啟
    摘要.ps429KbPostscript76檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋