English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45243/58419 (77%)
造訪人次 : 2486795      線上人數 : 232
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/4046


    題名: Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks
    作者: 林朝順
    Lin CS;Chiu JS;Hsieh MH;Mok M;Li YC;Chiu HW
    貢獻者: 醫學系麻醉學科
    日期: 2008
    上傳時間: 2009-08-25 15:34:24 (UTC+8)
    摘要: Hypotension is one of the most frequent adverse effects of spinal anesthesia. Several factors might be related to the occurrence of hypotension. Predictions of the hypotensive event, however, had been addressed by only a few authors using logistic regression (LR) models. Artificial neural networks (ANN) are pattern-recognition tools that can be used to detect complex patterns within data sets. The purpose of this study was to develop the ANN-based predictive model to identify patients with high risk of hypotension during spinal anesthesia. From September 2004 to December 2006, the anesthesia records of 1501 patients receiving surgery under spinal anesthesia were used to develop the ANN and LR models. By random selection 75% of data were used for training and the remaining 25% of data were used as test set for validating the predictive performance. Five senior anesthesiologists were asked to review the data of test set and to make predictions of hypotensive event during spinal anesthesia by clinical experience. The ANN model had a sensitivity of 75.9% and specificity of 76.0%. The LR model had a sensitivity of 68.1% and specificity of 73.5%. The area under receiver operating characteristic curves were 0.796 and 0.748. The ANN model performed significantly better than the LR model. The prediction of clinicians had the lowest sensitivity of 28.7%, 22.2%, 21.3%, 16.1%, and 36.1%, and specificity of 76.8%, 84.3%, 83.1%, 87.0%, and 64.0%. The computer-based predictive model should be useful in increasing vigilance in those patients most at risk for hypotension during spinal anesthesia, in allowing for patient-specific therapeutic intervention, or even in suggesting the use of alternative methods of anesthesia.
    關聯: Comput Methods Programs Biomed.(92):193-197.
    資料類型: article
    顯示於類別:[麻醉學科] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    164.pdf173KbAdobe PDF120檢視/開啟
    摘要.pdf35KbAdobe PDF62檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋