Taipei Medical University Institutional Repository:Item 987654321/36410
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 45422/58598 (78%)
造访人次 : 2546734      在线人数 : 180
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/36410


    题名: Ceramide 誘發細胞死亡之分子訊息探討: GSK-3β 角色之研究
    作者: 陳偉立
    贡献者: 醫學科學研究所
    日期: 2010
    上传时间: 2010-10-20 13:02:11 (UTC+8)
    摘要: 研究指出引發創傷性腦損傷(traumatic brain injury, TBI),伴隨微神經膠及星狀細胞活化而引發神經發炎反應,釋放活性氧分子及發炎性介質,繼而引起ceramide的合成,ceramide (神經醯胺)為細胞膜的成份之ㄧ,且為一個重要的次級訊息傳遞因子(second messenger),參與眾多訊息傳遞路徑之調控,並可能導致細胞凋亡(apoptosis),亦發現ceramide的含量上升為造成細胞死亡的主要原因之ㄧ,ceramide可因實驗模式與條件之差異而造成不同的死亡型式,包括細胞凋亡(apoptosis)及細胞自噬 (autophagy)。當創傷性腦損傷發生時,除了造成神經細胞的損傷,同時也會造成腦血管內皮細胞傷害。Autophagy為細胞中蛋白質分解之機制,其在細胞死亡中所扮演的角色仍有許多爭議,研究發現,顯示autophagy可扮演保護性角色,使細胞於不佳環境時得以存活,若抑制autophagy則會導致
    細胞凋亡。近期文獻指出TBI後細胞會進行autophagy,顯示autophagy可能在TBI所導致之細胞死亡中扮演相當重要的角色。Glycogen synthase kinase-3β (GSK-3β)為一種蛋白質激酶,且已被證實參與TBI疾病過程,但其與autophagy之相關性仍不明。因此,本論文以腦血管內皮細胞(cerebral endothelial cells, CECs)為細胞模式,利用ceramide來模擬TBI所造成次及傷害,探討ceramide所導致autophagy與細胞死亡之關連性,並研究GSK-3β在TBI的疾病過程中所扮演之角色。實驗結果顯示,以C6-ceramide處理腦血管內皮細胞後,利用annexin V/PI double stain及acridine orange進行流式細胞儀定量實驗,發現在30 μM及12 h 之前autophagy之比例隨劑量及時間而增加,之後則隨之降低;apoptosis的比例均持續上升。而利用immunoblotting及穿透式電子顯微鏡技術,可明顯觀察到LC3-II蛋白質量上升及autophagosome形成,證實C6-ceramide可誘使腦血管內皮細胞產生混合型細胞死亡模式。再以immunoblotting分別偵測時間點GSK-3β蛋白質磷酸化程度,證明在腦血管內皮細胞C6-ceramide促使GSK-3β活化。且腦血管內皮細胞經由預先處理鋰鹽(LiCl)、GSK-3β抑制劑(AR-A014418)及siRNA可有效抑制C6-ceramide所誘使的autophagy並促使apoptosis增加,而過度表現(overexpression)GSK-3β則明顯增加C6-ceramide 所導致的autophagy 並降低apoptosis , 故證明GSK-3β 在C6-ceramide誘導細胞死亡過程扮演保護性角色。藉由本論文之究,有助釐清TBI所導致細胞死亡的訊息傳遞路徑,以期望在臨床上可提供一個新的治療方針。

    Ceramide, a sphingomyelin-derived second messenger,mediates cellular signalsof cytokines such as TNFα that are rapidly produced in the brain in response tovigorous neuronal activity and tissue injury, which is generated in cerebral endothelialcells. This activation may contribute to the progression of tissue damage and matrix destruction leading to BBB failure after a traumatic brain injury. The role of
    autophagy in cell death is controversial. It was reported that autophagy serves as a protective mechanism helping cells survive from nutrient deprivation, and cells undergo apoptotic cell death when autophagy is inhibited. It was published that autophagy was observed after TBI, indicating that autophagy may be involved in TBI-induced cell death. Glycogen synthesis kinase- 3β (GSK-3β) is a serine/threonine kinase and activation of GSK-3β was able to regulate autophagy.
    However, the role of GSK-3β in TBI-induced autophagy seems to be obscure. Inthis study, using cerebral endothelial cells as experimental model, we plan to investigate the underlying mechanisms of ceramide-induced autophagy and apoptosis, and the role of GSK-3 β i n TBI. After treatment with C6-ceramide, the CECs underwent autophagy and apoptosis in a dose- and time-dependent manner, as
    revealed by acridine orange and Annexin V/PI double staining methods on a flow cytometer, respectively. Of which, the autophagy was confirmed by the formation of
    autophagosomes and processing of LC-3, hallmarks of autophagy, using electron microscopy and immunoblotting, respectively. To demonstrate the involvement of glycogen synthase kinase-3β(GSK-3β), we employed LiCl, a selective inhibitor of GSK-3β, AR-A014418, and the siRNA technique to knockdown the expression of GSK-3 β , both of which resulting in decrease of the percentage of
    C6-ceramide-induced autophagy and increase apoptosis. Following this line, cells harboring the GSK-3βgene by transient transfection were more sensitive to exposure
    C6-ceramide, suggesting that GSK-3 β plays a crucial role in regulating the C6-ceramide-induced autophagy and apoptosis. Executing of this study will expand our knowledge regarding the signaling mechanism of TBI-induced cell death and may serve a new strategy for clinical therapy of TBI.
    關聯: 52頁
    描述: 章節目錄-------------------------------------------------------------------------- I
    圖表目次-------------------------------------------------------------------------- II
    中文摘要-------------------------------------------------------------------------- IV
    英文摘要-------------------------------------------------------------------------- VI
    縮寫表--------------------------------------------------------------------------- VIII
    緒論-------------------------------------------------------------------------------- 1
    實驗方法與材料----------------------------------------------------------------- 9
    結果-------------------------------------------------------------------------------- 15
    討論-------------------------------------------------------------------------------- 20
    未來實驗方向與展望----------------------------------------------------------- 23
    參考文獻-------------------------------------------------------------------------- 26
    圖表-------------------------------------------------------------------------------- 37


    Abbott N. J. Astrocyte–endothelial interactions and blood–brain barrier permeability. J. Anat. 200: 629–638, 2002.
    Abbott N. J., Ronnback L. and Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev., Neurosci. 7: 41–53, 2006.
    Adelson P. D., Whalen M. J., Kochanek P. M., Robichaud P. and Carlos T. M. Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir. Suppl. 71: 104-106, 1998.
    Baethmann A., Eriskat J., Stoffel M., Chapuis D., Wirth A. and Plesnila N. Special aspects of severe head injury: recent developments. Curr Opin Anaesthesiol 11: 193–200, 1998.
    Baldwin S. A., Fugaccia I., Brown D. R., Brown L. V. and Scheff S. W. Blood-brain barrier breach following cortical contusion in the rat. J. Neurosurg. 85: 476-481, 1996.
    Bergamini E., Cavallini G., Donati A. and Gori Z. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed. Pharmacother. 57: 203-208, 2003.
    Beurel E. and Jope R. S. The paradoxical pro- and anti-apoptotic actions of GSK-3 in the intrinsic and extrinsic apoptosis signaling pathway. Prog. Neurobiol. 79: 173-189, 2006.
    Bhat R. V. and Budd S. L. GSK3beta signaling: casting a wide net in Alzheimer’s disease. Neurosignals 11: 251-261, 2002.
    Bournat J. C., Brown A. M. C. and Soler A. P. Wnt-1dependent activation of the survival factor NF-κB in PC12 cells. J. Neurosci. Res. 61: 21-32, 2000.
    Caro L. H., Plomp P. J., Wolvetang E. J., Kerkhof C. and Meijer A. J. 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur. J. Biochem. 175: 325-329, 1998.
    Chalfant C. E., Kishikawa K., Mumby M. C., Kamibayashi C., Bielawska A. and Hannun Y. A. Long chain ceramides activate protein phosphatase- 1 and protein phosphatase-2A. Activation is stereospeci.c and regulated by phosphatidic acid. J. Biol. Chem. 274: 20313–20317, 1999.
    Chen T. G., Chen T. L., Chang H. C., Tai Y. T., Cherng Y. G., Chang Y. T. and Chen RM. Oxidized low-density lipoprotein induces apoptotic insults to mouse cerebral endothelial cells via a Bax-mitochondria-caspase protease pathway. Toxicol. Appl. Pharmacol 219: 42-53, 2007.
    Chmura S. J., Nodzenski E., Weichselbaum R. R., and Quintans J. Protein kinase C inhibition induces apoptosis and ceramide production through activation of a neutral sphingomyelinase. Cancer Res. 56: 2711–2714, 1996.
    Choi D. W. Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol. 6: 667–672, 1996.
    Corso P., Finkelstein E., Miller T., Fiebelkorn I. and Zaloshnja E. Incidence and lifetime costs of injuries in the United States. Inj Prev. 12: 212-218, 2006.
    Cuervo A. M. Autophagy: in sickness and in health. Trends Cell Biol. 14: 70-77, 2004b.
    Deirdre A. N. and Eileen W. Exploiting different ways to die. Genes Dev. 18: 1223–1226, 2004.
    Devrim G. and Adi K. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23: 2891–2906, 2004.
    Dobrowsky R. T., Kamibayasha C., Mumby M. C. and Hannun Y. A. Ceramide activates a heterotrimeric protein phosphatase 2A. J Biol. Chem. 268: 15523–15530, 1993.
    Finfer S. R. and Cohen J. Severe traumatic brain injury. Resuscitation 48: 77–90, 2001.
    Eldadah B. A. and Faden A. I. Caspase pathways, neuronal apoptosis, and CNS injury. J. Neurotrauma 17: 811–829, 2000.
    Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8: 126–132, 2002.
    Elmore S. P., Qian T., Grissom S. F. and Lemasters J. J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FAESB J. 15: 2286-2287, 2001.
    Emamian E. S., Hall D., Birnbaum M. J., Karayiorgou M. and Gogos J. A. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat. Genet. 36: 131–137, 2004.
    Embi N., Rylatt D. B. and Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107: 519–527, 1980.
    Engelhardt B. Development of the blood–brain barrier. Cell Tissue Res.314: 119–129, 2003.
    Fang X., Yu S. X., Lu Y., Bast R. C. Jr.,Woodgett J. R. and Mills G. B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. U.S.A. 97: 11960-11965, 2000.
    Farr G. H., Ferkey D. M., Yost C., Pierce S. B., Weaver C. and Kimelman D. Interaction among GSK3, GBP, axin, and APC in Xenopus axis specification. J. Cell Biol. 148: 691-702, 2000.
    Frame S. and Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359: 11–16, 2001.
    Frame S. and Zheleva D. Targeting glycogen synthase kinase-3 in insulin signalling. Expert Opin. Ther. Targets 10: 429–444, 2006.
    Futter C. E., Collinson L. M., Backer J. M. and Hopkins C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155: 1251-1264, 2001.
    Gobbel G., Chan G. and Gregory P. Response of cerebral endothelial cells to hypoxia: modification by fructose-1,6-bisphosphate but not glutamate receptor antagonists. Brain Res. 653: 23-30, 1994.
    Godemann R., Biernat J., Mandelkow E. and Mandelkow E. M. Phosphorylation of tau protein by recombinant GSK-3beta: pronounced phosphorylation at select Ser/Thr- Pro motifs but no phosphorylation at Ser262 in the repeat domain. FEBS Lett. 454: 157-164, 1999.
    Gould T. D., Zarate C. A. and Manji H. K. Glycogen synthase kinase-3: a target form novel bipolar disorder treatments. J. Clin. Psychiatry 65: 10-21, 2004.
    Gozuacik D. and Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23: 2891–2906, 2004.
    Graham D. I., Adams J. H., and Gennarelli T. A. Mechanisms of non-penetrating head injury. Prog. Clin. Biol. Res. 264: 159-168, 1988.
    Grimes C. A. and Jope R. S. The multifaceted roles of glycogen synthase kinase-3β in cellular signaling. Prog. Neurobiol. 65: 391–426, 2001a.
    Grimes C. A. and Jope R. S. CREB activity is inhibited by glycogen synthase kinase-3β and facilitated by lithium. J. Neurochem. 78: 1219-1232, 2001b.
    Guimaraes C. A. and Linden R. Programmed cell death: apoptosis and alternative death styles. Eur. J. Biochem. 271: 1638-1650, 2004.
    Hartfield P. J., Mayne G. C. and Murray A. W. Ceramide induces apoptosis in PC12 cells. FEBS Lett. 401: 148-152, 1997.
    Hartigan J. A., Xiong W. C. and Johnson, G. V. Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2. Biochem. Biophys. Res. Commun. 284: 485-489, 2001.
    Hengartner M. O. The biochemistry of apoptosis. Nature 407: 770–776, 2000.
    Hetman M., Cavanaugh J. E., Kimelman D. and Xia Z. Role of glycogen synthase kinase-3β in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20: 2567-2574, 2000.
    Hirosako K., Imasato H., Hirota Y., Kuronita T., Masuyama N., Nishioka M., Umeda A., Fujita H., Himeno M. and Tanaka Y. 3-Methyladenine specifically inhibits retrograde trans port of cation-independent mannose 6-phosphate/insulin-like growth factor II receptor from the early endosome to the TGN. Biochem. Biophys. Res. Commun. 316: 845-852, 2004.
    Holmin S., Soderlund J., Biberfeld P. and Mathiesen, T. Intracerebral inflammation after human brain contusion. Neurosurgery 42: 291-298, 1998.
    Joe E. S. Apoptotic cell death following traumatic injury to the central nervous system. J. Biochem. Mol. Biol. 35: 94-105, 2000.
    Jope R. S. and Johnson G. V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29: 95–102, 2004.
    Kiffin R., Christian C., Knecht E. and Cuervo A. M. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell 15: 4829-4840, 2004.
    Kim M. Y., Linardic C., Obeid L.and Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J. Biol. Chem. 266: 484-489, 1991.
    Klein P. S. and Melton D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. U.S.A. 93: 8455–8459, 1996.
    Kolesnick R. N. and Krönke M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60: 643-665, 1998.
    Lai Y., Hickey R. W., Chen Y., Bayir H., Sullivan M. L., Chu C. T., Kochanek P. M. Dixon C. E., Jenkins L. W., Graham S. H., Watkins S. C. and Clark R. S. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J. Cereb Blood Flow Metab. 28: 540-550, 2008.
    Laurent G. J. Autophagy: too much or too little recycling in the cell? Int. J. Biochem. Cell Biol. 36: 2364, 2004.
    Leist M. and Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell. Biol. 2: 589-598, 2001.
    Lemaster J. J., Nieminen A. L., Qian T., Trost L. C., Elmore S. P., Nishmura Y., Crowe R. A., Cascio W. E., Bradham C. A., Brenner D. A. and Herman B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta-Bioenerg. 1366: 177-196, 1998.
    Levine B. and Klionsky D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6: 463-477, 2004.
    Lin C. F., Chen C. L., Chiang C. W. , Jan M. S., Huang E. C. and Lin Y. S. GSK-3 acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramideinduced mitochondrial apoptosis. J. Cell. Sci. 120: 2935-2943, 2007.
    Lin J. W., Lin C. M., Tsai J. T., Hung K. S., Hung C. C., and Chiu W. T. Neurotrauma research in Taiwan. Acta Neurochir Suppl. 101: 113-117, 2008.
    Mark A., Gregory, Y. Qi. and Stephen R. H. Phosphorylation by Glycogen Synthase Kinase-3 Controls c-Myc Proteolysis and Subnuclear Localization. J. Biol. Chem. 278: 51606–51612, 2003
    Marshall L. F. Head injury: recent past, present, and future. Neurosurgery 47: 546–561, 2000.
    Mazor M., Kawano Y., Zhu H., Waxman J. and Kypta R. M. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene 23: 7882-7892, 2004.
    McCracken G. H., Jr., Mustafa M. M., Ramilo O., Olsen K. D. and Risser R. C. Cerebrospinal fluid interleukin 1-β and tumor necrosis factor concentrations and outcome from neonatal gram-negative enteric bacillary meningitis. Pediatr. Infect. Dis. J. 8: 155–159, 1989.
    McIntosh T. K., Smith D. H., Meaney D. F., Kotapka M. J., Gennarelli T. A. and Graham D. I. Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biochemical mechanisms. Lab. Invest. 74: 315–42, 1996.
    Mignotte E. and Vayssiere J. L. Mitochondria and apoptosis. Eur. J. Biochem. 252: 1-15, 1998.
    Moran S., Avital L., Anat M., Chaim G. P., Esther S. and Hagit E. F. Role of glycogen synthase kinase-3β in early depressive behavior induced by mild traumatic brain injury. Mol. Cell. Neurosci. 34: 571–577, 2007.
    Nathoo N., Narotam P. K., Agrawal D. K., Connolly C. A., van Dellen J. R., Barnett G. H. and Chetty R. Influence of apoptosis on neurological outcome following traumatic cerebral contusion. J. Neurosurg. 101: 233-240, 2004.
    Nortje J. and Menon D. K. Traumatic brain injury: physiology, mechanisms, and outcome. Curr. Opin. Neurol. 17: 711–8, 2004.
    Obeid L. M., Lindardic C. M., Karolak L. A. and Hannun Y. A. Programmed cell death induced by ceramide. Science 259: 1769-1771, 1993.
    Ougolkov A. V., Fernandez-Zapico M. E., Savoy D. N., Urrutia R. A. and Billadeau D. D. Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 65: 2076-2081, 2005.
    Pap M. and Cooper G. M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem. 273: 19929-19932, 1998.
    Petiot A., Ogier-Denis E., Blommaart E. F. C., Meijer A. J. and Codogno P. Distinct classes of phosphatidylinositol 3’-kinase are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275: 992-998, 2000.
    Ragano-Caracciolo M., Berlin W. K., Miller M. W. and Hanover J. A. Nuclear glycogen and glycogen synthase kinase 3. Biochem. Biophys. Res. Commun. 249: 422–427, 1998.
    Ragaisis V. Brain contusion: morphology, pathogenesis and treatment. Medicina (Kaunas) 38: 243-249, 2002.
    Ruiz-Argüello M. B., Basáñez G., Goñi F. M. and Alonso A. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem. 271: 26616-26621, 1996.
    Ruvolo P. P. Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15: 1153-1160, 2001.
    Santana P., Pena L. A. And Haimovitz-Friedman A. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–99, 1996.
    Schwarze P. E. and Seglen P. O. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of heapocytes isolated from carcinogen-treated rats. Exp. Cell Res. 157: 15-28, 1985.
    Shohami E., Novikov M., Bass R., Yamin A.and Gallily R. Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb. Blood Flow Metab. 14: 615-619, 1994.
    Singh I., Pahan K., Khan M. and Singh A. K. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J. Biol. Chem. 273: 20354–20362, 1998.
    Sikorska B., Liberski P. P., Giraud P., Kopp N. and Brown P. Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int. J. Biochem. Cell Biol. 36: 2563-2573, 2004.
    Siskind L. J., Kolesnick R. N. and Colombini M. Membrane restructuring via ceramide results in enhanced solute efflux. J. Biol. Chem. 277: 11788-91174, 2002.
    Stambolic V., Ruel L. and Woodgett J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signaling in intact cells. Curr. Biol. 6: 1664-1668, 1996.
    Sutherland C., Leighton I. A. and Cohen, P. Inactivation of glycogen synthase kinase-3β by phosphorylation: new kinase connections in insulin and growth-factor signaling. Biochem. J. 296: 15-19, 1993.
    Sutherland, C. and Cohen, P. The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase orMAPkinase-activated protein kinase-1 in vitro. FEBS Lett. 338: 37-42, 1994.
    Tagliaferri F., Compagnone C., Korsic M., Servadei F. and Kraus J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 148: 255–268, 2006
    Takashima A., Noguchi K., Sato K., Hoshino T. and Imahori K. Tau protein kinase I is essential for amyloid-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. U.S.A. 90: 7789-7793, 1993.
    Takashima A., Honda T., Yasutake K., Michel G., Murayama Q., Murayama M., Ishiguro K. and Yamaguich H. Activation of tau protein kinase/glycogen synthase kinase-3β by amyloid β peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci. Res. 31: 317-323, 1998.
    Tchelingerian J. L., Quinonero J., Booss J. and Jacque C. Localization of TNF alpha and IL-1 alpha immunoreactivities in striatal neurons after surgical injury to the hippocampus. Neuron 10: 213-224, 1993.
    Wang S. H., Shih Y. L., Kuo T. G., Ko W. G. and Shih C. M. Cadmium Toxicity toward Autophagy through ROS-Activated GSK-3β in Mesangial Cells. Toxicol. Sci. 108: 124–131, 2009.
    Wagman A. S., Johnson K. W.and Bussiere D. E. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des. 10: 1105-1137, 2004.
    Werner C. and Engelhard K. Pathophysiology of traumatic brain injury. British Journal of Anaesthesia 99: 4–9, 2007.
    Woodgett J. R. Molecula cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9: 2431-2438, 1990.
    Woodgett J. R. Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disorders. Curr. Drug Targets Immune Endocr. Metabol. Disord. 3: 281-290, 2003.
    Xue L., Fletcher G. C. and Tolkovsky A. M. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr. Biol. 11: 361-365, 2001.
    Yaar M., Stiles B., Groszer M., Wang S., Jiao J. and Wu H. PTEN less means more. Dve. Biol. 273: 175-184, 2004.
    Yamamoto H., Kishida S., Uochi T., Ikeda S., Koyama S., Asashima M. and Kikuchi A. Axil, a member of the axin family,m interacts with both glycogen synthease kinase 3B and B-catenin and inhibits axis formation of Xenopus embryos. Mol. Cell. Biol. 18: 2867-2875, 1998.
    Yamamoto H., Kishida S., Kishida M., Ikeda S., Takada S. and Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3B regulates its stability. J. Biol. Chem. 274: 10681-10684, 1999.
    Yu L., Alva A., Su H., Dutt P., Freundt E., Welsh S., Baehreeke E. H. and Lenardo M. J. Relation of an Atg7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500-1502, 2004.
    Zhu J. H., Horbinski C., Guo F., Watkins S., Uchiyama Y. and Chu C. T. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methylpyridinium-induced cell death. Am. J. Pathol. 170: 75-86, 2007.
    显示于类别:[醫學科學研究所] 博碩士論文

    文件中的档案:

    没有与此文件相关的档案.



    在TMUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈