資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/36402
|
題名: | 微生物轉換D環修飾之異甜菊醇及生物活性評估 |
作者: | 周柏宏 |
貢獻者: | 藥學系(博士班) |
關鍵詞: | 異甜菊醇 二萜 類化合物 微生物轉換 |
日期: | 2010 |
上傳時間: | 2010-10-20 12:58:33 (UTC+8) |
摘要: | 微生物轉換為利用微生物細胞中的酵素系統進行一連串生物催化反應,將化合物進行構造修飾。值得注意的是,利用此項技術可於各種不同受質中較難以反應之位置進行立體、部位專一性反應。許多研究指出,利用微生物酵素之立體選擇特性於有機合成化合物或天然化合物進行構造修飾,不但可能增加其本身之生理活性,同時也可能產生新的藥理作用。Isosteviol (2)屬於四環二萜類化合物,具有ent-beyerane架構,並於D環上有酮基,其基本骨架與固醇類類似,具有許多生物活性。根據文獻報告指出,固醇類化合物的許多重要藥理活性取決於其構造上D環之變化,而以化學觀點來看,具有bridged ring骨架之isosteviol (2)很適合做為微生物轉換研究之受質,因此,本論文以isosteviol (2)為原料,於構造上進行修飾,以期開發具新的藥理活性之化合物。利用isosterism原理,先將isosteviol (2) D環上的酮基進行化學構造修飾,得到lactone (3)、oxime (4)及lactam (5)之衍生物,再利用微生物轉換技術進行構造修飾3、4及5,得到各種不同的化合物,以進行藥理活性之研究。經由菌種篩選isosteviol衍生物3、4及5發現,Cunninghamella bainieri ATCC 9244、Aspergillus niger BCRC 32720、Absidia
pseudocylindrospora ATCC 24169及Mucor recurvatus MR 36可產生許多代謝產物且具再現性,因而進行大量發酵培養,並經由各種萃取及純化等步驟得到代謝產物。
研究發現,受質 isosteviol lactone (4-carboxy-13??-hydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-
lactone) (3)經由與C. bainieri反應得到代謝物4-carboxy-15??-hydroxy-15,16-seco-ent-19-norbeyeran-16-oic acid 15,16-lactone (6)、4-carboxy-7??,13-dihydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (7)、4-carboxy-7,15??-dihydroxy-15,16-seco-ent-19-norbeyeran-16-oic acid 15,16-lactone (8)及15,16-dioxo-16-methoxy-15,16-seco-ent-beyeran-19-oic acid (9),此生化反應包含異構化反應、羥化反應,以及在環裂解後進一步進行氧化反應與選擇性甲基化反應;另一方面,經由與Asp. niger反應得到羥基取代之代謝物,分別為 6、7、4-carboxy-1,13-dihydroxy-13,16-seco-ent-19-norbeyeran-16-
oic acid 13,16-lactone (10)、4-carboxy-1,15-dihydroxy-
15,16-seco-ent-19-norbeyeran-16-oic acid 15,16-lactone (11)、4??-carboxy-1??,7??,13??-trihydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (12)、4??-carboxy-1??,7??,15??-trihydroxy-15,16-seco-ent-19-norbeyeran-16-oic acid 15,16-lactone (13)、4??-carboxy-1??,13??-dihydroxy-7-oxo-13,16-seco-ent-19-norbeyeran-
16-oic acid 13,16-lactone (14),以及4??-carboxy-1??,7??,11??,13??-tetrahydroxy-13,16-seco-ent-19- norbeyeran-
16-oic acid 13,16-lactone (15);經由與Abs.
pseudocylindrospora反應,得到代謝物 7、4??-carboxy-12??,13??-dihydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (16)、4??-carboxy-12??,13??-dihydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (17)、4??-carboxy-7??,13??-dihydroxy-13,16-seco-ent-19-norbeyeran-
16-oic acid 13,16-lactone (18)、4??-carboxy-13??,17-dihydroxy-13,16-seco-ent-19-
norbeyeran-16-oic acid 13,16-lactone (19)、4??-carboxy-7??,13??,17-trihydroxy-13,16-seco-ent-19-norbeyeran-
16-oic acid 13,16-lactone (20)及4??-carboxy-9??,13??,17-trihydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-
lactone (21);經由與M. recurvatus反應,得到代謝物2、6、7及ent-7??-hydroxy-16-ketobeyeran-19-oic acid (22),其中6?{21為新化合物。所得之新化合物皆利用各種構造鑑定技術來確認,新化合物 6、7、9、16與18則進一步透過X-ray結晶繞射分析確認結構。由於四環二萜類化合物的結構類似類固醇化合物,因此此系列化合物於藥理活性試驗進行ARE (androgen response element)-mediated luciferase reporter gene assay以及抑制脂多醣刺激類老鼠巨噬細胞株RAW 264.7產生之AP-1的基因表現 [LPS-stimulated AP (activator protein)-1 expression in RAW 264.7 macrophages]作用評估,由結果顯示,6、9及13經ARE-mediated luciferase reporter gene assay篩選均呈有意義結果,其中9的活性比對照化合物testosterone 佳;而3、6、7、11、16、18、19與22對於抑制AP-1基因表現均呈現有意義結果,尤其6的抑制活性比對照化合物dexamethasone佳。
受質isosteviol oxime (ent-16-E-hydroxyiminobeyeran-19-oic acid) (4)分別與Asp. niger 及Abs. pseudocylindrospora進行微生物轉換,除了得到D環具有lactone或lactam架構之化合物3與4??-carboxy-13??-amino-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactam (5),及一個已知化合物ent-1,7-dihydroxy-
16-oxobeyeran-19-oic acid (23),另外也得到五個新化合物ent-7??-hydroxy-16-E-hydroxyl-iminobeyeran-19-oic acid (24)、
ent-1??,7??-dihydroxy-16-E-hydroxyimino-beyeran-19-oic acid (25)、ent-1??-hydroxy-16-E-hydroxyiminobeyeran-
19-oic acid (26)、ent-8??-cyanomethyl-13-methyl-12-podocarpen-19-oic acid (27)及 ent-8??-cyanomethyl-
13-methyl-13-podocarpen-19-oic acid (28),所得之新化合物均經由高解析ESI質譜以及一維、二維核磁共振光譜等鑑定其結構,化合物24–26則進一步透過X-ray結晶繞射分析確認結構。在藥理活性部分,此系列化合物則針對抑制脂多醣刺激類老鼠巨噬細胞株RAW 264.7產生之NF-?羠及AP-1的基因表現 (LPS-stimulated NF-?羠 及AP-1 expressions in RAW 264.7 macrophages)作用進行評估,結果發現5及26於抑制NF-?羠基因表現呈現有意義結果,且26之抑制活性與對照化合物dexamethasone相同;此外,3、23、24、27與28於抑制AP-1基因表現呈現有意義結果,尤其是27對於AP-1的抑制活性比dexamethasone佳。
同樣的,受質isosteviol lactam (5)也分別與Asp. niger 及Abs. pseudocylindrospora進行微生物轉換,共得到十一個化合物,27、28、ent-8??-cyanomethyl-7??-hydroxy-13-
methyl-13-podocarpen-19-oic acid (29)、ent-8??-cyanomethyl-1??-hydroxy-13-methyl-13-
podocarpen-19-oic acid (30)、ent-8??-cyanomethyl-12??-chloro-13(17)-podocarpen-19-oic acid (31)、4??-carboxy-13??-amino-13,16-seco-ent-15??-chloro-19-norbeyeran-16-oic acid 13,16-lactam (32)、ent-8??-cyanomethyl-12??-ethoxy-13-methyl-12-podocarpen-19-oic acid (33)、ent-8??-cyanomethyl-12??-methoxy-13-methyl-13-podocarpen-19-oic acid (34)、ent-8??-cyanomethyl-13-methyl-12-podocarpen-19-hydroxyethyl ester (35)、4??-carboxy-13??-
amino-13,16-seco-ent-7??-hydroxy-19-norbeyeran-16-oic acid 13,16-lactam (36)及4??-carboxy-13??-amino-13,16-seco-ent-12??-hydroxy-19-norbeyeran-16-oic acid 13,16-
lactam (37),此生物反應包括: 羥化反應、氯化反應,以及經D環裂解後再進行立體選擇性羥化反應、酯化反應和氯化反應。所得之新化合物均經由高解析ESI質譜以及一維、二維核磁共振光譜等鑑定其結構,其中35則進一步透過X-ray結晶繞射分析確認結構。在生物活性測試方面,此系列化合物則針對抑制脂多醣刺激類老鼠巨噬細胞株RAW 264.7產生之iNOS的基因表現 (LPS-stimulated iNOS expression in RAW 264.7 macrophages)作用進行評估,結果發現化合物29?{31、33?{34,以及37於抑制iNOS基
因表現呈現有意義結果,且34與37之活性比對照化合物dexamethasone佳。 |
關聯: | 230頁 |
描述: | (一)論文目次
I
目 錄
目錄…………………………………………………………………………….………I
附表目錄………………………………………………………………...………...…III
附圖目錄…………………………………………………………………………...…V
流程目錄………………………………………………………………………...…XIII
詞彙……………………………………………………………………………………1
中文摘要………………………………………………………………………………2
英文摘要………………………………………………………………………………5
第一章 緒論
第一節 微生物轉換之研究背景…………………………………………………9
第二節 藥物代謝研究之回顧…………………………………………………..15
第三節 甜菊之成分研究與活性探討…………………………………………..20
第四節 微生物轉換異甜菊醇之研究回顧……………………………………..23
第五節 研究目的………………………………………………………………..25
第二章 微生物轉換異甜菊醇衍生物之化學構造研究
D環修飾異甜菊醇之化學合成步驟…………………………………………….26
第一節 Isosteviol lactone 進行微生物轉換之構造研究……………………….27
第二節 Isosteviol oxime 進行微生物轉換之構造研究………………………...45
第三節 Isosteviol lactam 進行微生物轉換之構造研究………………………..52
第四節 微生物轉換D 環修飾之異甜菊醇的代謝路徑推論…………………..61
第三章 抗發炎作用機制與生理活性探討
第一節 微生物轉換D環修飾之異甜菊醇及相關生理活性概況及研究動機...64
第二節 微生物轉換D 環修飾之異甜菊醇之藥理活性試驗…………………..66
第三節 結果與討論……………………………………………………………128
第四章 實驗部份
第一節 實驗使用之儀器與藥品………………………………………………..73
第二節 異甜菊醇之製備………………………………………………………..76
第三節 異甜菊醇之化學構造修飾步驟………………………………………..77
II
第四節 微生物轉換研究之實驗步驟…………………………………………..79
第五節 微生物轉換D 環修飾異甜菊醇之藥理活性試驗步驟………………103
第五章 光譜數據
第一節 微生物轉換isosteviol lactone 成分之光譜數據……………………...105
第二節 微生物轉換isosteviol oxime 成分之光譜數據………………………163
第三節 微生物轉換isosteviol lactam 成分之光譜數據………………………182
附錄 產率附表……………………………………………………………………..215
參考文獻……………………………………………………………………………219
論文發表……………………………………………………………………………229
III
附表目錄
Table 1. 微生物轉換研究歷史……………………………………………………9
Table 2. Mammalian biotransformation of drugs………………………………...17
Table 3. Cytochrome P450 isoforms……………………………………………..19
Table 4. Active components of Stevia rebaudiana…………..…………………...20
Table 5. Biological effects and potential therapeutic applications of stevioside and
related compounds……………………………………………………....22
Table 6. Data of tested compounds showing significance on an androgen
receptor-mediated luciferase reporter gene assay……………………….66
Table 7. Data of tested compounds showing significance on an AP-1-mediated
luciferase reporter gene assay…………………………………………...67
Table 8. Data of tested compounds on an AP-1-mediated luciferase reporter gene
assay…………………………………………………………….............68
Table 9. Data of tested compounds on an NF-κB-mediated luciferase reporter gene
assay…………………………………………………………….............69
Table 10. Data of tested compounds showing significance on an iNOS-mediated
luciferase reporter gene assay…………………………………………...70
Table 11.
13C NMR chemical shifts of compounds 3 and 6−15 (C5D5N, δ values in
ppm)a……………………………………………………………………85
Table 12.
1H NMR chemical shifts of compounds 3 and 6−10 (C5D5N, δ values in
ppm)a,b…………………………………………………………………...86
Table 13.
1H NMR chemical shifts of compounds 11−15 (C5D5N, δ values in
ppm)a,b…………………………………………………………………...87
Table 14.
13C NMR chemical shifts of compounds 3 and 16−21(C5D5N, δ values in
ppm)a………………………...………………………………………….90
Table 15.
1H NMR chemical shifts of compounds 16−21 (C5D5N, δ values in
ppm)a,b…………………………………………………………………..91
Table 16.
13C NMR chemical shifts of compounds 4 and 24−28(C5D5N, δ values in
ppm)a……………………………………………………………………95
Table 17.
1H NMR chemical shifts of compounds 29−31 and 33−35 (C5D5N, δ
values in ppm)a,b………………………………………………………...96
Table 18.
13C NMR chemical shifts of compounds 5 and 29−37 (C5D5N, δ values in
ppm)a…………………………………………………………………..100
Table 19.
1H NMR chemical shifts of compounds 5, 32 and 36−37 (C5D5N, δ
values in ppm)a,b……………………………………………………….101
IV
Table 20.
1H NMR chemical shifts of compounds 29−31 and 33−35 (C5D5N, δ
values in ppm)a,b……………………………………………………….102
V
附圖目錄
Fig. 1 General strategy for the development of microbial
transformations……………………………………………...12
Fig. 2 Methods of conversion of PTBI into rabeprazole…………..13
Fig. 3 The proposed biosynthetic pathway of pregnenolone products
of methyl protodioscin………………………………………14
Fig. 4 Metabolic transformation of a drug…………………………16
Fig. 5 Microbial transformation of isosteviol……………………...23
Fig. 6 X-ray crystallography of isosteviol lactone (3)……………..28
Fig. 7 X-ray crystallography of 6…………………………………..29
Fig. 8 X-ray crystallography of 7…………………………………..31
Fig. 9 X-ray crystallography of 9…………………………………..32
Fig. 10 X-ray crystallography of 16…………………………………39
Fig. 11 X-ray crystallography of 18…………………………………41
Fig. 12 X-ray crystallography of 24…………………………………47
Fig. 13 X-ray crystallography of 25…………………………………48
Fig. 14 X-ray crystallography of 26…………………………………50
Fig. 15 X-ray crystallography of 35…………………………………58
Fig. 16 Standard procedure of microbial transformation……………80
Fig. 17 1H NMR spectrum of 3 (pyridine-d5, 400 MHz)…………..105
Fig. 18 13C NMR spectrum of 3 (pyridine-d5, 100 MHz)…………105
Fig. 19 1H NMR spectrum of 6 (pyridine-d5, 400 MHz)…………..106
Fig. 20 13C NMR spectrum of 6 (pyridine-d5, 100 MHz)…………106
Fig. 21 DEPT spectrum of 6 (pyridine-d5, 100 MHz)……………..107
Fig. 22 1H-1H COSY spectrum of 6 (pyridine-d5, 400 MHz)……...107
Fig. 23 HSQC spectrum of 6 (pyridine-d5, 400 MHz)…………….108
Fig. 24 HMBC spectrum of 6 (pyridine-d5, 400 MHz)……………108
Fig. 25 NOESY spectrum of 6 (pyridine-d5, 400 MHz)…………...109
Fig. 26 1H NMR spectrum of 7 (pyridine-d5, 400 MHz)…………..109
VI
Fig. 27 13C NMR spectrum of 7 (pyridine-d5, 100 MHz)…………110
Fig. 28 DEPT spectrum of 7 (pyridine-d5, 100 MHz)……………..110
Fig. 29 1H-1H COSY spectrum of 7 (pyridine-d5, 400 MHz)……...111
Fig. 30 HSQC spectrum of 7 (pyridine-d5, 400 MHz)……………..111
Fig. 31 HMBC spectrum of 7 (pyridine-d5, 400 MHz)…………….112
Fig. 32 NOESY spectrum of 7 (pyridine-d5, 400 MHz)…………...112
Fig. 33 1H NMR spectrum of 8 (pyridine-d5, 400 MHz)…………..113
Fig. 34 13C NMR spectrum of 8 (pyridine-d5, 100 MHz)………….113
Fig. 35 DEPT spectrum of 8 (pyridine-d5, 100 MHz)…………......114
Fig. 36 1H-1H COSY spectrum of 8 (pyridine-d5, 400 MHz)……...114
Fig. 37 HSQC spectrum of 8 (pyridine-d5, 400 MHz)……………..115
Fig. 38 HMBC spectrum of 8 (pyridine-d5, 400 MHz)…………….115
Fig. 39 NOESY spectrum of 8 (pyridine-d5, 400 MHz)…………...116
Fig. 40 1H NMR spectrum of 9 (pyridine-d5, 400 MHz)…………..116
Fig. 41 13C NMR spectrum of 9 (pyridine-d5, 100 MHz)………….117
Fig. 42 DEPT spectrum of 9 (pyridine-d5, 100 MHz)……………..117
Fig. 43 1H-1H COSY spectrum of 9 (pyridine-d5, 400 MHz)……...118
Fig. 44 HSQC spectrum of 9 (pyridine-d5, 400 MHz)……………..118
Fig. 45 HMBC spectrum of 9 (pyridine-d5, 400 MHz)…………….119
Fig. 46 NOESY spectrum of 9 (pyridine-d5, 400 MHz)…………...119
Fig. 47 1H NMR spectrum of 10 (pyridine-d5, 400 MHz)…………120
Fig. 48 13C NMR spectrum of 10 (pyridine-d5, 100 MHz)………...120
Fig. 49 DEPT spectrum of 10 (pyridine-d5, 100 MHz)……………121
Fig. 50 1H-1H COSY spectrum of 10 (pyridine-d5, 400 MHz)…….121
Fig. 51 HSQC spectrum of 10 (pyridine-d5, 400 MHz)……………122
Fig. 52 HMBC spectrum of 10 (pyridine-d5, 400 MHz)…………..122
Fig. 53 NOESY spectrum of 10 (pyridine-d5, 400 MHz)………….123
Fig. 54 1H NMR spectrum of 11 (pyridine-d5, 500 MHz)…………123
Fig. 55 13C NMR spectrum of 11 (pyridine-d5, 125 MHz)………...124
VII
Fig. 56 DEPT spectrum of 11 (pyridine-d5, 125 MHz)…………….124
Fig. 57 1H-1H COSY spectrum of 11 (pyridine-d5, 500 MHz)…….125
Fig. 58 HMQC spectrum of 11 (pyridine-d5, 500 MHz)…………..125
Fig. 59 HMBC spectrum of 11 (pyridine-d5, 500 MHz)…………..126
Fig. 60 NOESY spectrum of 11 (pyridine-d5, 500 MHz)………….126
Fig. 61 1H NMR spectrum of 12 (pyridine-d5, 400 MHz)…………127
Fig. 62 13C NMR spectrum of 12 (pyridine-d5, 100 MHz)………..127
Fig. 63 DEPT spectrum of 12 (pyridine-d5, 100 MHz)……………128
Fig. 64 1H-1H COSY spectrum of 12 (pyridine-d5, 400 MHz)…….128
Fig. 65 HSQC spectrum of 12 (pyridine-d5, 400 MHz)……………129
Fig. 66 HMBC spectrum of 12 (pyridine-d5, 400 MHz)…………..129
Fig. 67 NOESY spectrum of 12 (pyridine-d5, 400 MHz)………….130
Fig. 68 1H NMR spectrum of 13 (pyridine-d5, 400 MHz)…………130
Fig. 69 13C NMR spectrum of 13 (pyridine-d5, 100 MHz)………..131
Fig. 70 DEPT spectrum of 13 (pyridine-d5, 100 MHz)……………131
Fig. 71 1H-1H COSY spectrum of 13 (pyridine-d5, 400 MHz)…….132
Fig. 72 HSQC spectrum of 13 (pyridine-d5, 400 MHz)……………132
Fig. 73 HMBC spectrum of 13 (pyridine-d5, 400 MHz)…………..133
Fig. 74 NOESY spectrum of 13 (pyridine-d5, 400 MHz)………….133
Fig. 75 1H NMR spectrum of 14 (DMSO-d6, 400 MHz)…….........134
Fig. 76 13C NMR spectrum of 14 (DMSO-d6, 100 MHz)…………134
Fig. 77 DEPT spectrum of 14 (DMSO-d6, 100 MHz)……………..135
Fig. 78 1H-1H COSY spectrum of 14 (DMSO-d6, 500 MHz)……...135
Fig. 79 HSQC spectrum of 14 (DMSO-d6, 400 MHz)…………….136
Fig. 80 HMBC spectrum of 14 (DMSO-d6, 400 MHz)……………136
Fig. 81 NOESY spectrum of 14 (DMSO-d6, 400 MHz)…………...137
Fig. 82 1H NMR spectrum of 15 (pyridine-d5, 400 MHz)…………137
Fig. 83 13C NMR spectrum of 15 (pyridine-d5, 100 MHz)………..138
Fig. 84 DEPT spectrum of 15 (pyridine-d5, 100 MHz)……………138
VIII
Fig. 85 1H-1H COSY spectrum of 15 (pyridine-d5, 400 MHz)…….139
Fig. 86 HSQC spectrum of 15 (pyridine-d5, 400 MHz)……………139
Fig. 87 HMBC spectrum of 15 (pyridine-d5, 400 MHz)…………..140
Fig. 88 NOESY spectrum of 15 (pyridine-d5, 400 MHz)………….140
Fig. 89 1H NMR spectrum of 16 (pyridine-d5, 400 MHz)…………141
Fig. 90 13C NMR spectrum of 16 (pyridine-d5, 100 MHz)………..141
Fig. 91 DEPT spectrum of 16 (pyridine-d5, 100 MHz)……………142
Fig. 92 1H-1H COSY spectrum of 16 (pyridine-d5, 400 MHz)…….142
Fig. 93 HSQC spectrum of 16 (pyridine-d5, 400 MHz)……………143
Fig. 94 HMBC spectrum of 16 (pyridine-d5, 400 MHz)…………..143
Fig. 95 NOESY spectrum of 16 (pyridine-d5, 400 MHz)………….144
Fig. 96 1H NMR spectrum of 17 (pyridine-d5, 400 MHz)…………144
Fig. 97 13C NMR spectrum of 17 (pyridine-d5, 100 MHz)………..145
Fig. 98 DEPT spectrum of 17 (pyridine-d5, 100 MHz)…………....145
Fig. 99 1H-1H COSY spectrum of 17 (pyridine-d5, 400 MHz)…….146
Fig. 100 HSQC spectrum of 17 (pyridine-d5, 400 MHz)……………146
Fig. 101 HMBC spectrum of 17 (pyridine-d5, 400 MHz)…………..147
Fig. 102 NOESY spectrum of 17 (pyridine-d5, 400 MHz)………….147
Fig. 103 1H NMR spectrum of 18 (pyridine-d5, 400 MHz)…………148
Fig. 104 13C NMR spectrum of 18 (pyridine-d5, 100 MHz)………..148
Fig. 105 DEPT spectrum of 18 (pyridine-d5, 100 MHz)……………149
Fig. 106 1H-1H COSY spectrum of 18 (pyridine-d5, 400 MHz)…….149
Fig. 107 HSQC spectrum of 18 (pyridine-d5, 400 MHz)……………150
Fig. 108 HMBC spectrum of 18 (pyridine-d5, 400 MHz)…………..150
Fig. 109 NOESY spectrum of 18 (pyridine-d5, 400 MHz)………….151
Fig. 110 1H NMR spectrum of 19 (pyridine-d5, 500 MHz)………....151
Fig. 111 13C NMR spectrum of 19 (pyridine-d5, 125 MHz)………..152
Fig. 112 DEPT spectrum of 19 (pyridine-d5, 125 MHz)……………152
Fig. 113 1H-1H COSY spectrum of 19 (pyridine-d5, 500 MHz)…….153
IX
Fig. 114 HSQC spectrum of 19 (pyridine-d5, 500 MHz)……………153
Fig. 115 HMBC spectrum of 19 (pyridine-d5, 500 MHz)…………..154
Fig. 116 HMBC spectrum of 19 (pyridine-d5, 500 MHz)…………..154
Fig. 117 NOESY spectrum of 19 (pyridine-d5, 500 MHz)………….155
Fig. 118 1H NMR spectrum of 20 (pyridine-d5, 500 MHz)…………155
Fig. 119 13C NMR spectrum of 20 (pyridine-d5, 125 MHz)………..156
Fig. 120 DEPT spectrum of 20 (pyridine-d5, 125 MHz)……………156
Fig. 121 1H-1H COSY spectrum of 20 (pyridine-d5, 500 MHz)…….157
Fig. 122 HSQC spectrum of 20 (pyridine-d5, 500 MHz)……………157
Fig. 123 HMBC spectrum of 20 (pyridine-d5, 500 MHz)…………..158
Fig. 124 NOESY spectrum of 20 (pyridine-d5, 500 MHz)………….158
Fig. 125 1H NMR spectrum of 21 (pyridine-d5, 500 MHz)…………159
Fig. 126 13C NMR spectrum of 21 (pyridine-d5, 125 MHz)………..159
Fig. 127 DEPT spectrum of 21 (pyridine-d5, 125 MHz)……………160
Fig. 128 1H-1H COSY spectrum of 21 (pyridine-d5, 500 MHz)…….160
Fig. 129 HSQC spectrum of 21 (pyridine-d5, 500 MHz)……………161
Fig. 130 HMBC spectrum of 21 (pyridine-d5, 500 MHz)…………..161
Fig. 131 NOESY spectrum of 21 (pyridine-d5, 500 MHz)………….162
Fig. 132 1H NMR spectrum of 4 (pyridine-d5, 500 MHz)…………..163
Fig. 133 13C NMR spectrum of 4 (pyridine-d5, 125 MHz)………….163
Fig. 134 1H NMR spectrum of 24 (pyridine-d5, 500 MHz)…………164
Fig. 135 13C NMR spectrum of 24 (pyridine-d5, 125 MHz)………...164
Fig. 136 DEPT spectrum of 24 (pyridine-d5, 125 MHz)……………165
Fig. 137 1H-1H COSY spectrum of 24 (pyridine-d5, 500 MHz)……165
Fig. 138 HSQC spectrum of 24 (pyridine-d5, 500 MHz)……………166
Fig. 139 HMBC spectrum of 24 (pyridine-d5, 500 MHz)…………..166
Fig. 140 NOESY spectrum of 24 (pyridine-d5, 500 MHz)………….167
Fig. 141 1H NMR spectrum of 25 (pyridine-d5, 500 MHz)…………167
Fig. 142 13C NMR spectrum of 25 (pyridine-d5, 125 MHz)………..168
X
Fig. 143 DEPT spectrum of 25 (pyridine-d5, 125 MHz)……………168
Fig. 144 1H-1H COSY spectrum of 25 (pyridine-d5, 500 MHz)…….169
Fig. 145 HSQC spectrum of 25 (pyridine-d5, 500 MHz)……………169
Fig. 146 HMBC spectrum of 25 (pyridine-d5, 500 MHz)…………..170
Fig. 147 NOESY spectrum of 25 (pyridine-d5, 500 MHz)………….170
Fig. 148 1H NMR spectrum of 26 (pyridine-d5, 500 MHz)…………171
Fig. 149 13C NMR spectrum of 26 (pyridine-d5, 125 MHz)………..171
Fig. 150 DEPT spectrum of 26 (pyridine-d5, 125 MHz)……………172
Fig. 151 1H-1H COSY spectrum of 26 (pyridine-d5, 500 MHz)…….172
Fig. 152 HSQC spectrum of 26 (pyridine-d5, 500 MHz)……………173
Fig. 153 HMBC spectrum of 26 (pyridine-d5, 500 MHz)…………..173
Fig. 154 NOESY spectrum of 26 (pyridine-d5, 500 MHz)………….174
Fig. 155 1H NMR spectrum of 27 (pyridine-d5, 500 MHz)…………174
Fig. 156 13C NMR spectrum of 27 (pyridine-d5, 125 MHz)………..175
Fig. 157 DEPT spectrum of 27 (pyridine-d5, 125 MHz)……………175
Fig. 158 1H-1H COSY spectrum of 27 (pyridine-d5, 500 MHz)…….176
Fig. 159 HSQC spectrum of 27 (pyridine-d5, 500 MHz)……………176
Fig. 160 HMBC spectrum of 27 (pyridine-d5, 500 MHz)…………..177
Fig. 161 NOESY spectrum of 27 (pyridine-d5, 500 MHz)………….177
Fig. 162 1H NMR spectrum of 28 (pyridine-d5, 500 MHz)…………178
Fig. 163 13C NMR spectrum of 28 (pyridine-d5, 125 MHz)………..178
Fig. 164 DEPT spectrum of 28 (pyridine-d5, 125 MHz)……………179
Fig. 165 1H-1H COSY spectrum of 28 (pyridine-d5, 500 MHz)…….179
Fig. 166 HSQC spectrum of 28 (pyridine-d5, 500 MHz)……………180
Fig. 167 HMBC spectrum of 28 (pyridine-d5, 500 MHz)…………..180
Fig. 168 NOESY spectrum of 28 (pyridine-d5, 500 MHz)………….181
Fig. 169 1H NMR spectrum of 5 (pyridine-d5, 500 MHz)…………..182
Fig. 170 13C NMR spectrum of 5 (pyridine-d5, 125 MHz)………….182
Fig. 171 1H NMR spectrum of 29 (pyridine-d5, 500 MHz)…………183
XI
Fig. 172 13C NMR spectrum of 29 (pyridine-d5, 125 MHz)………..183
Fig. 173 DEPT spectrum of 29 (pyridine-d5, 125 MHz)……………184
Fig. 174 1H-1H COSY spectrum of 29 (pyridine-d5, 500 MHz)…….184
Fig. 175 HSQC spectrum of 29 (pyridine-d5, 500 MHz)……………185
Fig. 176 HMBC spectrum of 29 (pyridine-d5, 500 MHz)…………..185
Fig. 177 NOESY spectrum of 29 (pyridine-d5, 500 MHz)………….186
Fig. 178 1H NMR spectrum of 30 (pyridine-d5, 500 MHz)…………186
Fig. 179 13C NMR spectrum of 30 (pyridine-d5, 125 MHz)………..187
Fig. 180 DEPT spectrum of 30 (pyridine-d5, 125 MHz)……………187
Fig. 181 1H-1H COSY spectrum of 30 (pyridine-d5, 500 MHz)…….188
Fig. 182 HSQC spectrum of 30 (pyridine-d5, 500 MHz)……………188
Fig. 183 HMBC spectrum of 30 (pyridine-d5, 500 MHz)…………..189
Fig. 184 NOESY spectrum of 30 (pyridine-d5, 500 MHz)………….189
Fig. 185 1H NMR spectrum of 31 (pyridine-d5, 500 MHz)…………190
Fig. 186 13C NMR spectrum of 31 (pyridine-d5, 125 MHz)………...190
Fig. 187 DEPT spectrum of 31 (pyridine-d5, 125 MHz)……………191
Fig. 188 1H-1H COSY spectrum of 31 (pyridine-d5, 500 MHz)…….191
Fig. 189 HSQC spectrum of 31 (pyridine-d5, 500 MHz)……………192
Fig. 190 HMBC spectrum of 31 (pyridine-d5, 500 MHz)…………..192
Fig. 191 NOESY spectrum of 31 (pyridine-d5, 500 MHz)………….193
Fig. 192 1H NMR spectrum of 32 (pyridine-d5, 500 MHz)…………193
Fig. 193 13C NMR spectrum of 32 (pyridine-d5, 125 MHz)………..194
Fig. 194 DEPT spectrum of 32 (pyridine-d5, 125 MHz)……………194
Fig. 195 1H-1H COSY spectrum of 32 (pyridine-d5, 500 MHz)…….195
Fig. 196 HSQC spectrum of 32 (pyridine-d5, 500 MHz)……………195
Fig. 197 HMBC spectrum of 32 (pyridine-d5, 500 MHz)…………..196
Fig. 198 NOESY spectrum of 32 (pyridine-d5, 500 MHz)………….196
Fig. 199 1H NMR spectrum of 33 (pyridine-d5, 500 MHz)…………197
Fig. 200 13C NMR spectrum of 33 (pyridine-d5, 125 MHz)………...197
XII
Fig. 201 DEPT spectrum of 33 (pyridine-d5, 125 MHz)……………198
Fig. 202 1H-1H COSY spectrum of 33 (pyridine-d5, 500 MHz)…….198
Fig. 203 HSQC spectrum of 33 (pyridine-d5, 500 MHz)……………199
Fig. 204 HMBC spectrum of 33 (pyridine-d5, 500 MHz)…………..199
Fig. 205 NOESY spectrum of 33 (pyridine-d5, 500 MHz)………….200
Fig. 206 1H NMR spectrum of 34 (pyridine-d5, 500 MHz)…………200
Fig. 207 13C NMR spectrum of 34 (pyridine-d5, 125 MHz)………..201
Fig. 208 DEPT spectrum of 34 (pyridine-d5, 125 MHz)…………....201
Fig. 209 1H-1H COSY spectrum of 34 (pyridine-d5, 500 MHz)…….202
Fig. 210 HSQC spectrum of 34 (pyridine-d5, 500 MHz)……………202
Fig. 211 HMBC spectrum of 34 (pyridine-d5, 500 MHz)…………..203
Fig. 212 NOESY spectrum of 34 (pyridine-d5, 500 MHz)………….203
Fig. 213 1H NMR spectrum of 35 (pyridine-d5, 500 MHz)………....204
Fig. 214 13C NMR spectrum of 35 (pyridine-d5, 125 MHz)………..204
Fig. 215 DEPT spectrum of 35 (pyridine-d5, 125 MHz)……………205
Fig. 216 1H-1H COSY spectrum of 35 (pyridine-d5, 500 MHz)…….205
Fig. 217 HSQC spectrum of 35 (pyridine-d5, 500 MHz)……………206
Fig. 218 HMBC spectrum of 25 (pyridine-d5, 500 MHz)…………..206
Fig. 219 NOESY spectrum of 35 (pyridine-d5, 500 MHz)………….207
Fig. 220 1H NMR spectrum of 36 (pyridine-d5, 500 MHz)………....207
Fig. 221 13C NMR spectrum of 36 (pyridine-d5, 125 MHz)………..208
Fig. 222 DEPT spectrum of 36 (pyridine-d5, 125 MHz)……………208
Fig. 223 1H-1H COSY spectrum of 36 (pyridine-d5, 500 MHz)…….209
Fig. 224 HSQC spectrum of 36 (pyridine-d5, 500 MHz)……………209
Fig. 225 HMBC spectrum of 36 (pyridine-d5, 500 MHz)…………..210
Fig. 226 NOESY spectrum of 36 (pyridine-d5, 500 MHz)………….210
Fig. 227 1H NMR spectrum of 37 (pyridine-d5, 500 MHz)…………211
Fig. 228 13C NMR spectrum of 37 (pyridine-d5, 125 MHz)………..211
Fig. 229 DEPT spectrum of 37 (pyridine-d5, 125 MHz)……………212
XIII
Fig. 230 1H-1H COSY spectrum of 37 (pyridine-d5, 500 MHz)…….212
Fig. 231 HSQC spectrum of 37 (pyridine-d5, 500 MHz)……………213
Fig. 232 HMBC spectrum of 37 (pyridine-d5, 500 MHz)…………..213
Fig. 233 NOESY spectrum of 37 (pyridine-d5, 500 MHz)………….214
XIV
流程目錄
Scheme 1. Structures of stevioside, isosteviol, and metabolites………………….24
Scheme 2. Reagents and conditions………………………………………………26
Scheme 3. Preparation of isosteviol (2) and isosteviol lactone…………………...27
Scheme 4. Microbial transformation of isosteviol lactone (3) by C. bainieri…30
Scheme 5. Microbial transformation of isosteviol lactone (3) by Asp. niger…….33
Scheme 6. Microbial transformation of isosteviol lactone (3) by Abs.
pseudocylindrospora…………………………………………………..38
Scheme 7. Microbial transformation of isosteviol lactone (3) by M. recurvatus…44
Scheme 8. Preparation of isosteviol oxime (4)……………………………………45
Scheme 9. Microbial transformation of isosteviol oxime by Abs.
Pseudocylindrospora………………………………………………….46
Scheme 10. Microbial transformation of isosteviol oxime by Asp. niger………….49
Scheme 11. Preparation of isosteviol lactam……………………………………….52
Scheme 12. Microbial transformation of isosteviol lactam (5) by Asp. niger……...53
Scheme 13. Microbial transformation of isosteviol lactam by Abs.
pseudocylindrospora…………………………………………………..59
Scheme 14. 微生物轉換isosteviol lactone (3)之代謝途徑……………………….62
Scheme 15. 微生物轉換isosteviol oxime (4)之代謝途徑………………………...63
Scheme 16. 微生物轉換isosteviol lactam (5)之代謝途徑………………………..63
(二)參考文獻
1. Pasteur, L. Compt. Rend., 1857, 45, 913.
2. Büchner, E. Ber. Dysch. Chem. Ges. 1897, 30, 117.
3. 蘇遠志及黃世佑, 應用微生物學;華香園出版社, 台北, 1999, 初版.
4. Hanc, O.; Capek, A.; Tadra, M.; Macek, K.; Simek, A. Microbial transformation of
steroids. III. Direct conversion of progesterone into testosterone.
Arzneimittelforschung, 1957, 7, 175?{176.
5. Marsheck, W. J.; Karim, A. Preparation of metabolites of spironolactone by microbial oxygenation. Appl. Microbial., 1973, 25, 647?{649.
6. Smith, R. V.; Rosazza, J. P. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophysic., 1974, 161, 551?{558.
7. Marshall, V. P.; McGovren, J. P.; Richard, F. A.; Richard, R. E.; Wiley, P. F. Microbial metabolism of anthracycline antibiotics daunomycin and adriamycin. J. Antibiot., 1987, 31, 336?{342.
8. Ishii, H.; Niwaguchi, T.; Nakahara, Y.; Hayashi, M. Studies on lysergic acid diethylamide and related compounds. Part 8. Structural identification of new metabolites of lysergic acid diethylamide obtained by microbial transformation using Streptomyces roseochromogenes. J. Chem. Soc. Perkin TransⅠ, 1980, 4, 902?{905.
9. Hufford, C. D.; Capiton, G. A.; Clark, A. M.; Baker, J. K. Metabolism of imipramine by microorganisms. J. Pharm. Sci., 1981, 70, 151?{155.
10. Davis, P. J.; Rizzo, J. D. Microbial transformations of warfarin: stereoselective reduction by Nocardia corallia and Arthrobacter species. Appl. Environ. Microbial., 1982, 43, 884?{890.
11. Davis, P. J.; Guenthner, L. E. Sulindac oxidation/reduction by microbial cultures; microbial models of mammalian metabolism. Xenobiotica, 1985, 15, 845?{857.
12. Yang, W.; Davis, P. J. Microbial models of mammalian metabolism. Biotransformations of N-methylcarbazole using the fungus Cunninghamella echinulata. Drug Metab. Dispos., 1992, 20, 38?{46.
13. Hezari, M.; Davis, P. J. Microbial models of mammalian metabolism. Furosemide glucoside formation using the fungus Cunninghamella elegans. Drug Metab. Dispos., 1993, 21, 259?{267.
14. Venisetty, R. K.; Ciddi, V. Application of microbial biotransformation for the new drug discovery using natural drugs as substrates. Curr. Pharm. Biotech., 2003, 4, 153?{167.
15. Sun, L.; Huang, H. H.; Liu, L.; Zhong, D. F. Transformation of Verapamil by Cunninghamella blakesleeana. Appl. Environ. Microbial., 2004, 70, 2722?{2727.
16. Kim, H. J.; Park, H. S.; Lee, I. S. Microbial transformation of silybin by Trichoderma koningii. Bioorg. Med. Chem. Lett., 2006, 16, 790–793.
17. Das, S.; Rosazza, J. P. N. Microbial and Enzymatic Transformations of Flavonoids. J. Nat. Prod., 2006, 69, 499?{508.
18. Chen, G. T.; Yang, M. Song, Y.; Lu, Z. Q.; Zhang, J. Q.; Huang, H. L.; Wu, L. J.;
Guo, D. A. Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl. Microbiol. Biotechnol., 2008, 77, 1345–1350.
19. Marquina, S.; Parra, J. L., González, M.; Zamilpa, A.; Escalante, J.; Trejo-Hernández, M.
R.; Álvarez, L. Hydroxylation of the diterpenes ent-kaur-16-en-19-oic and ent-beyer-15-
en-19-oic acids by the fungus Aspergillus niger. Phytochemistry, 2009, 70, 2017–2022.
20. Maatooq, G. T.; Marzouk, A. M.; Gray, A. I.; Rosazza, J. P. Bioactive microbial metabolites from glycyrrhetinic acid. Phytochemistry, 2009, in press,
doi:10.1016/j.phytochem.2009.09.014
21. Hanson, J. R. The microbiological transformation of diterpenoids. Nat. Prod. Rep., 1992, 9, 139?{151.
22. Abourashed, E. A.; Clark, A. M.; Hufford, C. D. Microbial models of mammalian metabolism of xenobiotics: an updated review. Curr. Med. Chem., 1999, 6, 359–374.
23. Azerad, R. Microbial models for drug metabolism. Adv. Biochem. Eng. Biotechnol., 1999, 63, 169–218.
24. Smith, R. V.; Rosazza, J. P. Microbial models of mammalian metabolism. J. Pharm. Sci., 1975, 64, 1737–1758.
25. Smith, R. V.; Rosazza, J, P. Microbial models of mammalian metabolism. J. Nat. Prod., 1983, 46, 79–91.
26. Rosazza, J. P.; Smith, R. V. Microbial models for drug metabolism. Adv. Appl. Microbiol., 1979, 25, 169–208.
27. Clark, A. M.; Hufford, C. D. Use of microorganisms for the study of drug metabolism?{
an update. Med. Res. Rev., 1991, 11, 473–501.
28. Yoshida, T.; Kito, M.; Tsujii, M.; Nagasawa, T. Microbial synthesis of a proton pump inhibitor by enantioselective oxidation of a sulfide into its corresponding sulfoxide by Cunninghamella echinulata MK 40. Biotechnol. Lett., 2001, 23, 1217–1222.
29. Peterson, D. H.; Murray, H. C. Microbial oxygenation of steroids at carbon 11. J. Am. Chem. Soc., 1952, 74, 1871–1872.
30. He, X.; Wang, X.; Liu, B.; Su, L.; Wang, G.; Qu, G. Microbial transformation of methyl protodioscin by Cunninghamella elegans. J. Mol. Catal. B. Enzym., 2005, 35, 33–40.
31. He, X.; Liu, B.; Wang, G.; Wang, X.; Su, L.; Qu, G.; Yao, X. Microbial metabolism of methyl protodioscin by Aspergillus niger culture?{A new androstenedione producing way from steroid. J. Steroid Biochem. Mol. Biol., 2006, 100, 87?{94.
32. Lin, L.; Huang, H.; Zhang, P.; Qi, X.; Zhong, D. Microbial transformation of dextromethorphan by Cunninghamella blakesleeana AS 3.153. Chem. Pharm. Bull., 2007, 55, 658–661.
33. Smith, R. V.; Rosazza, J. P. Microbial systems for study of the biotransformations of drugs. Biotechnol. Bioeng., 2004, 17, 785–814.
34. Clark, A. M.; McChesney, J. D.; Hufford, C. D. The use of microorganisms for the study of drug metabolism. Med. Res. Rev., 1985, 5, 231–253.
35. Sepuri, A.; Maravajhala, V. Cunninghamella – A microbial model for drug metabolism studies – A review. Biotechnol. Adv., 2009, 27, 16–29.
36. Guengerich, F. P. Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol. Lett., 1994, 70, 133–138.
37. Kolars, J. C.; Lown, K. S.; Schmiedlin-Ren, P.; Ghosh, M.; Fang, C.; Wrighton, S. A. Cyp3A gene expression in human gut epithelium. Pharmacogenetics, 1994, 4, 247–259.
38. Slaughter, R. L.; Edwards, D. J. Recent advances: the cytochrome P450 enzymes. Ann. Pharmacother., 1995, 29, 619–624.
39. Gram, T. E. Metabolism of drugs. In: Craig, C. R.; Stitzel, R. E., editors. Modern
pharmacology. 4th ed. Boston: Little, Brown; 1994, 33–46.
40. Garrett, R. H.; Grisham, C.M. Biochemistry. Florida: Saunders college publishing;
1995, p. 753, 799.
41. Wheeler, C. W.; Guenthner, T. M. Spectroscopic quantitation of cytochrome P450 in human lung microsomes. J. Biochem. Toxicol., 1990, 5, 269–272.
42. Reichhart, D. W.; Feyereisen, R. Cytochromes P50: a success story. Genome. Biol., 2000, 1, 1–9.
43. Brink, J. M. V.; Hondel, C. A. M. J. J. V.; Gorcom, R. F. M. V. Optimization of the benzoate inducible benzoate p-hydroxylase cytochrome P450 enzyme system in Aspergillus niger. Appl. Microbiol. Biotechnol., 1996, 46, 360–364.
44. Groot, M. J. Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov. Today, 2006, 11, 601–606.
45. Rendic, S.; Carlo, F. J. D. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers and inhibitors. Drug Metab. Rev., 1997, 29, 413–580.
46. Shimada, T.; Yamazaki, H.; Mimura, M.; Inui, Y.; Guengerich, F. P. Inter-individual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther., 1994, 270, 414–422.
47. Masimirembwa, C. M.; Otter, C.; Berg, M.; Jonsson, M.; Leidvik, B.; Jonsson, E.; Johansson, T. Heterologous expression and kinetic characterization of human cytochromes P450: validation of a pharmaceutical tool for drug metabolism research. Drug Metab. Dispos., 1999, 27, 1117–1122.
48. Bertz, R. J.; Granneman, G. R. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin. Pharmacokinet., 1997, 32, 210–258.
49. Hanson, J. R.; De Oliveira, B. H. Stevioside and related sweet diterpenoid glycosides. Nat. Prod. Rep., 1993, 10, 301−309.
50. Kinghorn, A. D.; Soejarto, D. D. Discovery of terpenoid and phenolic sweeteners from plants. Pure Appl. Chem., 2002, 74, 1169−1179.
51. Genus, J. M. C. Stevioside. Phytochemistry, 2003, 64, 913?{921.
52. Shibata, H.; Sawa, Y.; Oka, T.; Sonoke, S.; Kim, K. K.; Yoshioka, M.. Steviol and steviol-glycoside: glucosyltransferase activities in Stevia rebaudiana Bertoni ?{
purification and partial characterization. Arch. Biochem. Biophys., 1995, 321, 390−396.
53. Wood, H. B.; Allerton, R.; Diehl, H. W.; Fletcher, H. G. Stevioside. I. The structure of the glucose moieties. J. Org. Chem., 1955, 20, 875−883.
54. Crammer, B.; Ikan, R. Sweet glycosides from the stevia plant. Chem. Br., 1986, 22, 915−917.
55. Chen, T. H.; Chen, S. C.; Chan, P.; Chu, Y. L.; Yang, H. Y.; & Cheng, J. T. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med., 2005, 71, 108?{113.
56. Jeppesen, P. B.; Gregersen, S.; Alstrup, K. K.; Hermansen, K. Stevioside induces
antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in
the diabetic Goto-Kakizaki (GK) rats. Phytomedicine, 2002, 9, 9?{14.
57. Hong, J.; Chen, L.; Jeppesen, P. B.; Nordentoft, I.; Hermansen, K. Stevioside
counteracts the ??-cell hypersecretion caused by long-term palmitate exposure. Am. J. Physiol. Endocrinol. Metab., 2006, 290, E416−E422.
58. Dyrskog, S. E.; Jeppesen, P. B.; Colombo, M.; Abudula, R.; Hermansen, K. Preventive effects of a soy-based diet supplemented with stevioside on the development of the metabolic syndrome and type 2 diabetes in Zucker diabetic fatty rats. Metabolism, 2005, 54, 1181?{1188.
59. Melis, M. S. Chronic administration of aqueous extract of Stevia rebaudiana in rats: renal effects. J. Ethnopharmacol., 1995, 47, 129?{134.
60. Lee, C. N.; Wong, K. L.; Liu, J. C.; Chen, Y. J.; Cheng, J. T.; & Chan, P. Inhibitory effect of stevioside on calcium influx to produce antihypertension. Planta Med., 2001, 67, 796?{799.
61. Chatsudthipong, V.; Thongouppakarn, P. Effects and mechanism of stevioside on rat renal function. FASEB. J., 1995, 9, 917.
62. Yasukawa, K.; Kitanaka, S.; Seo, S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol. Pharm. Bull., 2002, 25, 1488?{1490.
63. Mizushina, Y.; Akihisa, T.; Ukiya, M.; Hamasaki, Y.; Murakami-Nakai, C.; Kuriyama, I. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci., 2005, 77, 2127?{2140.
64. Boonkaewwan, C.; Toskulkao, C.; Vongsakul, M. Anti-inflammatory and
immunomodulatory activities of stevioside and its metabolite steviol on THP-1cells. J. Agric. Food. Chem., 2006, 54, 785?{789.
65. Takasaki, M.; Konoshima, T.; Kozuka, M.; Tokuda, H.; Takayasu, J.; Nishino, H.; Miyakoshi, M.; Mizutani, K.; Lee, K. H. Cancer preventive agents. Part 8: Chemopreventive effects of stevioside and related compounds. Bioorg. Med. Chem., 2009, 17, 600–605.
66. Tomita, T.; Sato, N.; Arai, T.; Shiraishi, H.; Sato, M.; Takeuchi, M. Bactericidal
activity of a fermented hot-water extract from Stevia rebaudiana Bertoni towards
enterohemorrhagic Escherichia coli O157:H7 and other food-borne pathogenic bacteria. Microbiol. Immunol., 1997, 41, 1005?{1009.
67. Takahashi,K.; Matsuda,M.; Ohashi, K.; Taniguchi,K.; Nakagomi,O.; Abe, Y. Analysis of anti-rotavirus activity of extract from Stevia rebaudiana. Antiviral. Res., 2001, 49, 15?{24.
68. Pariwat, P.; Homvisasevongsa, S.; Muanprasat, C.; Chatsudthipong, V. A natural
plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid
secretion. J. Pharmacol. Exp. Ther., 2008, 324, 798?{805.
69. Mosetting, E.; Nes, W. R. Stevioside. Ⅱ. The structure of the aglucon. J. Org. Chem., 1955, 20, 884?{889.
70. Mosetting, E.; Beglinger, U.; Dolder, F.; Lichti, H.; Quitt, P.; Waters, J. A. The absolute configuration of steviol and isosteviol. J. Am. Chem. Soc., 1963, 85, 2305?{2309.
71. Avent, A. G.; Hanson, J. R.; de Oliverira, B. H. Hydrolysis of the diterpenoid glycoside, stevioside. Phytochemistry, 1990, 29, 2712?{2713.
72. Mosetting, E.; Quitt, P.; Beglinger, U.; Waters, J. A.; Vorbrueggen, H.; Djerassi, C. A direct correlation of the diterpene alkaloids and hydrocarbons of the phyllocladene group. Interconversion of garryfoline and steviol. J. Am. Chem. Soc., 1961, 83, 3163?{3164.
73. Dolder, F.; Lichti, H.; Mosetting, E.; Quitt, P. The structure and stereochemistry of steviol and isosteviol. J. Am. Chem. Soc., 1960, 82, 246?{247.
74. Akihisa, T.; Hamasaki, Y.; Tokuda, H.; Ukiya, M.; Kimura, Y.; Nishino, H. Microbial Transformation of Isosteviol and Inhibitory Effects on Epstein?{Barr Virus Activation of the Transformation Products. J. Nat. Prod., 2004, 67, 407–410.
75. Bearder, J. R.; Frydman, V. M.; Gaskin, P.; MacMillan, J.; Wels, C. M.; Phinney, B. O. Fungal products. Part XVI. Conversion of isosteviol and steviol acetate into gibberellin analogues by mutant B1-41a of Gibberella fujikuroi and the preparation of [3H] gibberellin A20. J. Chem. Soc. Perkin Trans. I., 1976, 2, 173?{178.
76. de Oliverira, B. H.; Strapasson, R. A. Biotransformation of isosteviol by Fusarium verticilloides. Phytochemistry, 1996, 43, 393?{395.
77. de Oliverira, B. H.; Dos Santos, M. C.; Leal, P. C. Biotransformation of diterpenoid, isosteviol by Aspergillus niger, Penicillium chrysogenum and Rhizopus arrhizus. Phytochemistry, 1999, 51, 737?{741.
78. Hsu F. L.; Hou, C. C.; Yang, L. M.; Cheng, J. T.; Chi, T. C.; Liu, P. C.; Lin, S. J. Microbial transformations of isosteviol. J. Nat. Prod., 2002, 65, 273?{277.
79. Chang, S. F.; Yang, L. M.; Lo, C. H.; Liaw, J. H.; Wang, L. H.; Lin, S. J. Microbial transformation of isosteviol and bioactivities against the glucocorticoid/androgen response elements. J. Nat. Prod., 2008, 71, 87?{92.
80. Ghisalberti, E. L. The biological activity of naturally occurring kaurane diterpenes. Fitoterapia, 1997, 68, 303?{325.
81. Hanson, J. R. The microbiological transformation of diterpenoids. Nat. Prod. Rep. 1992,
9, 139?{151.
82. Chang, S. F.; Yang, L. M.; Hsu, F. L.; Hsu, J. Y.; Liaw, J. H.; Lin, S. J. Transformation of steviol-16alpha,17-epoxide by Streptomyces griseus and Cunninghamella bainieri. J. Nat. Prod., 2006, 69, 1450?{1455.
83. Braguini W. L.; Gomes, M. A.; de Oliveira B. H.; Carnieri, E. G.; Rocha, M. E.; de
Oliveira, M. B. Activity of isosteviol lactone on mitochondrial metabolism. Toxicol.
Lett., 2003, 143, 83?{92.
84. Militsina, O. I.; Kovyljaeva, G. I.; Bakaleynik, G. A.; Strobykina, I. Y.; Kataev, V. E.; Alfonsov, V. A.; Musin, R. Z.; Beskrovny, D. V.; Litvinov, I. A. Transformation of isosteviol oxime to a lactone under Beckmann reaction conditions. Mendeleev Commun. 2005, 15, 27?{29.
85. Al’fonsov, V. A.; Andreeva, O. V.; Bakaleinik, G. A.; Beskrovnyi, D. V.; Gubaidullin, A. T.; Kataev, V. E.; Kovylyaeva, G. I.; Konovalov, A. I.; Korochkina, M. G.; Litvinov, I. A.; Militsina, O. I.; Strobykina, I. Y. Chemistry and structure of diterpene compounds of the kaurane series: VIII. Azomethines derived from isosteviol Russ. J. Gen. Chem. 2003, 73, 1255?{1260.
86. Wang, C.; Jiang. X.; Shi, H.; Lu, J.; Hu, Y.; Hu, H. Optimization of the abnormal Beckmann rearrangement: application to steroid 17-oximes. J. Org. Chem. 2003, 68, 4579?{4581.
87. Loughlin, W. A. Biotransformations in organic synthesis. Bioresour. Technol. 2000, 74, 49?{62.
88. Lehmann, L. R.; Stewart, J. D. Filamentous Fungi: Potentially Useful Catalysts for the Biohydroxylations of Non-Activated Carbon Centers. Curr. Org. Chem., 2001, 5, 439?{470.
89. Lee, D. K.; Chang, C. S. Molecular communication between androgen receptor and general transcription machinery. J. Steroid Biochem. Mol. Biol., 2003, 84, 41?{49.
90. Chen, J. Y.; Hwang, D. J.; Bohl, C. E.; Miller, D. D.; Dalton, J. T. A selective androgen receptor modulator for hormone male contraception. J. Pharmacol. Exp.
Ther., 2005, 312, 546?{553.
91. Christman, J. W.; Sadikot, R. T.; Blackwell, T. S. The role of nuclear factor-κB in pulmonary diseases. Chest, 2000, 117, 1482?{1487.
92. Barnes. P. J. Corticosteroid effects on cell signaling. Eur. Respir. J., 2006, 27, 413?{426.
93. Adcock, I. M. Glucocorticoid-regulated Transcription Factors. Pulm. Pharmacol. Ther., 2001, 14, 211?{219.
94. Jeon, Y. J.; Han, S. H.; Lee, Y. W.; Lee, M.; Yang K. H.; Kim, H. M. Dexamethasone inhibits IL-1β gene expression in LPS-stimulated RAW 264.7 cells by blocking NF-κB/Rel and AP-1 activation. Immunopharmacology, 2000, 48, 173?{183.
95. Ma, W.; Gee, K.; Lim, W.; Chambers, K.; Angel, J. B.; Kozlowski, M.; Kumar, A. Dexamethasone Inhibits IL-12p40 Production in Lipopolysaccharide-Stimulated Human Monocytic Cells by Down-Regulating the Activity of c-Jun N-Terminal Kinase, the Activation Protein-1, and NF-κB Transcription Factors. J. Immunol., 2004, 172, 318?{330.
96. Jochum, W.; Passegus, E.; Wagner, E. F. AP-1 in mouse development and tumorigenesis. Oncogene, 2001, 20, 2401–2412.
97. Sekhar P. M. R.; Brooke T. M. Role and regulation of activator protein-1 in toxicant-induced responses of the lung. Am. J. Physiol. Lung. Cell. Mol. Physiol., 2002, 283, 1161?{1178.
98. Zenz, R.; Eferl, R.; Scheinecker, C.; Redlich, K.; Smolen, J.; Schonthaler, H. B.; Kenner, L.; Tschachler, E.; Wagner, E. F. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther., 2008, 10, 201?{211.
99. Makarov, S. S. NF-kappaB in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res., 2001, 3, 200?{206.
100. Taylor, M. E.; de Vera, R. W.; Ganster, Q.; Wang, R. A.; Shapiro, T. R. Billiar; Geller D.A. A novel NF-κB enhancer element regulates cytokine induction of the human inducible nitric oxide synthase gene promoter, J. Biol. Chem., 1998, 273, 15148–15156.
101. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol., 2001, 2, 907–916.
102. Fugen A. iNOS-mediated nitric oxide production and its regulation. Life Sci., 2004, 75, 639?{653.
103. Aktan, F.; Henness, S.; Roufogalis, B. D.; Ammit, A. J. Gypenosides derived from Gynostemma pentaphyllum suppress NO synthesis in murine macrophages by inhibiting iNOS enzymatic activity and attenuating NF-?羠-mediated iNOS protein expression. Nitric Oxide, 2003, 8, 235–242.
104. Korhonen, R.; Lahti, A.; Hämäläinen, M.; Kankaanranta, H.; Moilanen, E. Dexamethasone Inhibits Inducible Nitric-Oxide Synthase Expression and Nitric Oxide Production by Destabilizing mRNA in Lipopolysaccharide-Treated Macrophages. Mol. Pharmacol., 2002, 62, 698?{704. |
顯示於類別: | [藥學系] 博碩士論文
|
在TMUIR中所有的資料項目都受到原著作權保護.
|