資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/36388
|
題名: | 液相層析串聯質譜分析法定性及定量生物檢體內毒藥物成分 |
作者: | 劉秀娟 |
貢獻者: | 藥學系(博士班) |
關鍵詞: | 液相層析串聯質譜分析法 定性分析 定量分析 毒藥物 |
日期: | 2010 |
上傳時間: | 2010-10-20 12:53:06 (UTC+8) |
摘要: | 近年來隨著液相層析質譜分析法的技術進展,有許多不同類組合的液相層析串聯質譜儀,可以提供開發更具專一性分析方法的機會,尤其是在使用單一種分析方法來達成毒藥物篩驗及確認的雙重檢測目標的可能性上。本研究首先使用液相層析電灑離子阱質譜儀,樣品經層析管分離、離子阱質譜儀選取母離子(M+H),以線性增加碰撞能量技術將母離子碰撞為子離子,選取子離子之二次質譜圖及滯留時間,建立800種包含鴉片類、安非他命類、鎮靜安眠藥、抗憂鬱劑、農藥及一般常見藥物等毒藥物標準正電離子模式二次質譜圖資料庫,此一創新的離子斷裂模式及擁有豐富離子訊息之毒藥物二次質譜圖資料庫經歷六個月之長期測試結果,顯示質譜的再現性及比對率極佳。同時我們亦採用大量死亡案件解剖取得生物檢體及美國病理學會能力測試檢體,經液相-液相或固相萃取法處理後,注入儀器檢測,配合分析軟體進行圖譜資料搜尋比對,結果確認分析方法對於毒藥物成分的鑑別率極高,且在待測物滯留時間內並沒有明顯的干擾物質存在,此一方法與傳統二步驟之免疫分析法及氣相層析質譜分析法相比較,在檢測毒藥物的能力方面在檢出率與檢驗時效已有重大突破及明顯提昇。
本研究進一步應用液相層析三段四極柱串聯質譜儀建立靈敏度及專一性高的分析方法,以氘化物為內標準品、正電離子模式電灑游離法(ESI)配合多重反應偵測(MRM)同時定量分析頭髮及唾液內安非他命、甲基安非他命、嗎啡、可待因、乙醯嗎啡及乙醯可待因等6種成分。頭髮分析部分係以50 mg空白頭髮配製濃度為100-10000 pg/mg等7種不同濃度之日內及日間精準度(CV%)安非他命為1.03-5.06%、甲基安非他命為1.90-5.56%、嗎啡為0.95-7.41%、可待因為1.01-7.62%、乙醯嗎啡為2.23-4.01%、乙醯可待因為1.29-8.21%;在此濃度範圍內具有良好之線性關係 (r2>0.998);最低可偵測濃度(LOD) 為10 pg/mg;最低可定量濃度(LOQ)為50 pg/mg。以此方法對監所86位接受觀察勒戒女子之頭髮進行安非他命類及鴉片類成分定量分析,探討國內此二類毒品併用之比例及成分間之比值相關性。在唾液分析部分係將10 ?尳之唾液以直接注入儀器分析之方式,同時定量分析唾液內安非他命類及鴉片類6種成分,因減少檢體前處理及萃取濃縮等步驟,可縮短分析之時間,在濃度1-500 ng/mL範圍內具有良好之線性關係 (r2>0.990);以5種濃度檢測日內及日間精準度(CV%),安非他命為1.02-4.24%、甲基安非他命為1.00-8.16%、嗎啡為0.85-11.38%、可待因為1.67-9.62%、乙醯嗎啡為0.92-3.50%、乙醯可待因為2.75-12.89%。最低可偵測濃度及最低可定量濃度均為1 ng/mL,亦成功以此方法應用於接受毒品減害替代療法的34位測試者之唾液中所含安非他命類及鴉片類成分定量分析。
Recent advances in liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology have provided an opportunity for the development of more specific approaches to achieve the screen and confirmation goals in a single analytical step. For this purpose, this study adapts the electrospray ionization ion trap LC-MS/MS instrumentation for the screening and confirmation of over 800 drugs and toxic compounds in biological specimens. An LC-MS/MS database, including 800 drug and toxic compounds, has been constructed, featuring information-rich MS/MS spectra derived from a novel fragmentation approach incorporating voltage ramping and broadened mass window for activation. The resulting spectra are rich in high- and low-mass fragment ions, highly effective for matching and proven reproducible over a 6 month test period. Coupled to effective sample preparation protocols, the database searching process greatly improved the identification of drugs in postmortem specimens and external proficiency test samples provided by College of American Pathology by the LC-electrospray ionization (ESI)-MS/MS technology. No significant interference was found at the retention time expected of the targeted compounds. This method has significantly improved the efficiency of our routine laboratory operation that was based on a two-step (fluorescence polarization immunoassay and gas chromatography/mass spectrometry) approach in the past.
Furthermore, in this study, we developed a sensitive and specific method for simultaneous quantitation of amphetamine, methamphetamine, morphine, codeine, 6-acetylmorphine and 6-acetylcodeine in human hair and oral fluid by LC-MS/MS. Calibration, with deuterated internal standards, was performed by linear regression analysis. Mass spectrometric analysis was performed in positive-ion mode, applying multiple reaction monitoring using appropriate collision energy for each precursor ion. When applied to the analysis of drug-free hair specimens fortified with 100-10000 pg/mg, the overall protocol achieves the following inter-day and intra-day precision ranges: 1.03-5.06%, 1.90-5.56%, 0.95-7.41%, 1.01-7.62%, 2.23-4.01% and 1.29-8.21%, for amphetamine, methamphetamine, morphine, codeine, 6-acetylmorphine, and 6-acetylcodeine, respectively. Good linearity (r2 > 0.998) and detection and quantitation limits (10 and 50 pg/mg) were routinely observed. Data derived from the analysis of amphetamines and opiates in hair samples collected from 86 self-reported drug abusers were evaluated to understand the drug use pattern among this population. For oral fluid analysis, 10-?尳 aliquots were injected directly onto the LC-MS/MS system. Linearity was established in the concentration range of 1-500 ng/mL. The limits of detection and quantitation were 1 ng/mL for these 6 analytes. The precision and accuracy were determined by spiking oral fluid samples at five concentration levels. For all analytes, the relative standard deviations of intra- and inter-day precision were 0.85-6.41% and 1.00-12.89%, respectively. With practically no sample preparation requirement, this method substantially reduced total analysis time and was successfully applied to the analysis of 34 oral fluid specimens collected from patients participating in a substitution therapy program. |
關聯: | 224頁 |
描述: | (一)論文目次
第一章 緒論………………………………………………………………1
第一節 前言…………………………………………………………2
第二節 法醫毒物及臨床毒物分析流程簡介………………………2
壹、分離…………………………………………………………2
貳、初步篩驗………………………………………………… 3
參、確認檢驗………………………………………………… 3
肆、定量分析………………………………………………… 4
第三節 研究動機及目的………………………………………… 4
第四節 液相層析質譜儀儀器原理……………………………… 6
壹、進樣系統………………………………………………… 7
貳、離子源…………………………………………………… 7
一、電灑游離法…………………………………………… 8
二、大氣壓化學游離法…………………………………… 11
參、質量分析器……………………………………………… 12一、四極柱質量分析器…………………………………… 12
二、離子阱質量分析器…………………………………… 14
肆、偵測器…………………………………………………… 15
伍、資料處理系統…………………………………………… 16
陸、串聯質譜分析法………………………………………… 16
一、子離子掃描…………………………………………… 18
二、母離子掃描…………………………………………… 18
三、中性丟失掃描………………………………………… 19
四、選擇反應偵測………………………………………… 19
五、多重反應偵測………………………………………… 19
第五節 研究內容概述…………………………………………… 20
第二章 以液相層析離子阱質譜儀建立二次質譜資料庫以篩驗及確認生物檢體內未知毒藥物成分………….………………………… 21
第一節 前言…………………………….………………………… 22
第二節 實驗材料與方法………………………………………… 24
壹、實驗材料.. ………………………………………………… 24
貳、實驗儀器……………………………….………………… 24
參、檢體來源……………………..…………………………… 26
一、生物檢體…………………………..………………… 26
二、非傳統性檢體…………………..…………………… 26
三、美國病理學會盲績效檢體…………………………… 26
肆、實驗方法…………………….………….………………… 26
一、建立資料庫………………………….…….………… 26
二、固相萃取…………………………..………………… 26
三、液相-液相萃取…………………..…………………… 27
四、頭髮及指甲萃取……………………………………… 27
五、資料庫搜尋比對……………………………………… 27
第三節 結果與討論……………………………………………… 29
壹、線性增加碰撞能量技術評估…………………………… 29
貳、ESI-MS/MS之圖譜資料庫……………………………… 29
參、資料庫搜尋……………………………………………… 30
肆、偵測極限之評估………………………………………… 30
伍、標準二次質譜再現性評估……………………………… 30
陸、分析方法耐變性評估…………………………………… 31
柒、二次質譜資料庫應用實例……………………………… 40
一、死亡案件檢體分析…………………………………… 40
二、頭髮與指甲檢體分析………………………………… 44
三、美國病理協會準確性能力測試……………………… 46
第四節 結論……………………………………………………… 46
附表………………………………………………………………… 51
縮寫表……………………………………………………………… 61
第三章 以高分離度快速液相層析離子阱質譜儀及自動化二次質譜
資料庫搜尋方式快速分析屍體內毒藥物成分……………… 63
第一節 前言……………………………………………………… 64
壹、UPLC之原理…………………………………………… 65
貳、RRLC之原理…………………………………………… 66
參、UPLC及RRLC於毒藥物分析之應用………………… 67
第二節 實驗材料與方法………………………………………… 69
壹、實驗材料……..…………………………………………… 69
貳、實驗儀器……………………………….………………… 70
參、檢體來源……………………..…………………………… 71
一、生物檢體…………………………..………………… 71
二、非傳統性檢體…………………..…………………… 71
三、美國病理學會盲績效檢體…………………………… 71
肆、實驗方法…………………….………….………………… 71
一、建立資料庫………………………….…….………… 71
二、固相萃取…………………………..………………… 71
三、液相-液相萃取…………………..…………………… 72
四、頭髮萃取……………………………………………… 72
第三節 結果與討論……………………………………………… 72
壹、ESI-MS/MS之圖譜資料庫……………………………… 72
貳、標準二次質譜再現性評估……………………………… 73
參、偵測極限之評估………………………………………… 74
肆、死亡案件檢體分析……………………………………… 74
一、海洛因致死案例……………………………………… 74
二、司法毒物實際案例應用……………………………… 83
伍、頭髮檢體分析—古柯鹼案例…………………………… 86
陸、美國病理協會準確性能力測試………………………… 89
柒、以381件死者血液比較RRLC-MS/MS與GC/MS檢測
能力…………………………………………… 98
第四節 結論……………………………………………………… 98
第四章 以液相層析串聯質譜分析法同時定量頭髮中安非他命類及
鴉片類成分……………….…………………………………… 102
第一節 前言…………………………….………………………… 103
壹、毛髮之結構與生理…………….………………………… 105
貳、藥物進入毛髮的機轉………….………………………… 106
參、頭髮中毒品成分研究文獻回顧………………………… 107
肆、頭髮中毒品成分釋出之方法…………………………… 109
伍、本研究之動機與目的……….…………………………… 110
第二節 實驗材料與方法………………………………………… 111
壹、實驗材料……..…………………………………………… 111
貳、標準品溶液的配製……………………………………… 112
一、標準品溶液的配製…………………………………… 112
二、氘內標準品溶液的配製……………………………… 112
三、頭髮檢量線溶液的配製……………………………… 112
參、實驗儀器……………………………….………………… 113
肆、檢體來源…………………………….…………………… 114
一、空白頭髮樣品………………….…………………… 114
二、吸毒者頭髮樣品……………….…………………… 114
三、頭髮分段……………………….…………………… 114
伍、實驗方法………………….………….………………… 115
一、檢體前處理方式…….………….………….………… 115
二、消化及培育方法評估……….…………….………… 115
三、分析方法的確效評估.………….………….………… 115
四、偵測極限與定量極限…………..…………………… 115
五、吸毒者頭髮中安非他命類及鴉片類成分分析……… 115
六、頭髮分段分析……………………..………………… 116
第三節 結果與討論……………………………………………… 116
壹、檢體前處理方式對於待分析物穩定性影響…………… 116
一、消化或溫浸方式對於待分析物安定性影響………… 116
二、吸毒者頭髮經消化或溫浸後溶出率之比較………… 117
貳、萃取回收率……………………………………………… 118
參、基質效應………………………………………………… 119
肆、分析方法的確效評估…………………………………… 121
伍、偵測極限與定量極限…………………………………… 135
陸、監所接受觀察勒戒者頭髮之分析……………………… 135
柒、監所接受觀察勒戒者頭髮之分段分析………………… 138
第四節 結論……………………………………………………… 138
第五章 以液相層析串聯質譜分析法直接注射方式同時定量唾液中
安非他命類及鴉片類成分………….………………………… 142
第一節 前言…………………………….………………………… 143
壹、唾液中毒藥物成分研究文獻回顧……………………… 144
貳、本研究之動機與目的…….……………………………… 146
第二節 實驗材料與方法………………………………………… 146
壹、實驗材料……..…………………………………………… 146
貳、標準品溶液的配製……………………………………… 147
一、標準品溶液的配製…………………………………… 147
二、氘內標準品溶液的配製……………………………… 147
三、唾液檢量線溶液的配製……………………………… 147
參、實驗儀器……………………………….………………… 148
肆、檢體來源…………………….………….………………… 152
一、空白唾液樣品…….……………………….………… 152
二、吸毒者唾液樣品………………..…………………… 152
伍、實驗方法…………………….………….………………… 152
一、檢體前處理方式……….………….………………… 152
二、檢體前處理方法評估….………….………………… 152
(一) 不同唾液基質對分析物波峰面積影響評估… 152
(二)唾液基質加熱處理對分析物波峰面積影響
評估……………….………….………………… 152
三、分析方法的確效評估….………….………………… 153
四、偵測極限與定量極限.………….…………………… 153
五、吸毒者唾液中安非他命類及鴉片類成分分析……… 153
第三節 結果與討論……………………………………………… 153
壹、檢體前處理方法評估…………………………………… 153
一、不同唾液基質對分析物波峰面積影響評估………… 153
二、唾液基質加熱處理對分析物波峰面積影響評估…… 154
貳、基質效應………………………………………………… 155
參、專一性評估……………………………………………… 156
肆、分析方法的確效評估…………………………………… 157
伍、偵測極限與定量極限…………………………………… 157
陸、吸毒者唾液中安非他命類及鴉片類成分分析………… 171
第四節 結論……………………………………………………… 171
第六章 總結…………………………………………………………… 174
第七章 參考文獻……………………………………………………… 175
著作選集………………………………………………………………… 190
(二)參考文獻
[1] B. Levine: Principles of Forensic Toxicology: AACC Press, Washington, DC, p 5-8 (1999).
[2] O. H. Drummer. Review chromatographic screening techniques in systematic toxicological analysis. J. Chromatogr. B. 733: 27-45 (1999).
[3] R. Jansen, G. Lachatre, P. Marquet. LC-MS/MS systematic toxicological analysis: comparison of MS/MS spectra obtained with different instruments and settings. Clin. Biochem. 38: 362-372 (2005).
[4] A. Tracqui, P. Kintz, P. Mangin. Systematic toxicological analysis using HPLC/DAD. J. Forensic Sci. 40: 254-262 (1995).
[5] C. K. Lai, T. Lee, K. M. Au, Y. W. Chan. Uniform solid-phase extraction procedure for toxicological drug screening in serum and urine by HPLC with photodiode-array detection. Clin. Chem. 43: 312-325 (1997).
[6] S. P. Elliott, K. A. Hale. Application of an HPLC-DAD drug-screening system based on retention indices and UV spectra. J. Anal. Toxicol. 22: 279-289 (1998).
[7] M. Herzler, S. Herre, F. Pragst. Selectivity of substance identification by HPLC-DAD in toxicological analysis using a UV spectra library of 2682 compounds. J. Anal. Toxicol. 27: 233-243 (2003).
[8] M. A. Alabdalla. HPLC-DAD for analysis of different classes of drugs in plasma. J. Clin. Forensic Med. 12: 310-315 (2005).
[9] K. R. Allen, R. Azad, H .P. Field, D. K. Blake. Replacement of immunoassay by LC tandem mass spectrometry for the routine measurement of drugs of abuse in oral fluid. Ann. Clin. Biochem. 42: 277-284 (2005).
[10] C. Mueller, S. Vogt, R. Goerke, A. Kordon, W. Weinmann. Identification of selected psychopharmaceuticals and their metabolites in hair by LC/ESI-CID/MS and LC/MS/MS. Forensic Sci. Int. 113: 415-421 (2000).
[11] F. Saint-Marcoux, G. Lachatre, P. Marquet. Evaluation of an improved general unknown screening procedure using liquid chromatography- electrospray-mass spectrometry by comparison with gas chromatography and high-performance liquid chromatography-diode array detection. J. Am. Soc. Mass Spectrom. 14: 14-22 (2003).
[12] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse. Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9: 592-602 (1990).
[13] A. P. Bruins, T. R. Covery, D. Henion. Ion spray interface for combined liquid chromatography/atomospheric pressure ionization mass spectrometry. Anal. Chem. 59: 2624-2646 (1987).
[14] M. Sakairi and H. Kambara. Chromatograph/atmospheric pressure ionization mass spectrometer. Anal. Chem. 60: 774-780 (1988).
[15] Y. C. Tyan, C. W. Hung, P. C. Liao. Ion trap and quadrupole/ time-of-flight tandem mass spectrometers and their applications in proteomics research. Instruments Today 25: 42-55 (2003). (In Chineses)
[16] E. Unsold, F. Hillenkamp, R. Nitsche. Mass group spectrometry of peptides and proteins by matrix assisted ultraviolet laser desorption/ ionization in methods in enzymology. Analysis 4: 115-127 (1990).
[17] M. Barber, R. S. Bordoli, R. D. Sedgwick, A. N. Tyler. Fast atom bombardment mass spectrometry of the angiotensin peptides. Biomed. Mass Spectrom. 9: 208-214 (1982).
[18] A. Benninghoven, F. G. Rudenauer, H. W. Werner. Secondary ion mass spectrometry-basic concepts instrumental aspects applications and trends. Wiley, New York (1987).
[19] R. J. Cotter. Plasma desorption mass spectrometry: coming of age. Anal. Chem. 60: 781A-793A (1988).
[20] C. M. Whitehouse, R. N. Dreyer, M. Yamashita, J. B. Fenn. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57: 675-679 (1985).
[21] A. Gomez, K. Tang. On the structure of an electrostatic spray of monodispers droplets. Phys. Fluid. 65: 404-410 (1994).
[22] G. J. Louter, A. J. H. Boerboom, P. F. M. Stalmeier, H. H. Tuithof, J. Kistemaker. A tandem mass spectrometer for collision-induced dissociation. Int. J. Mass Spectrom. Ion Phys. 33: 335-347 (1980).
[23] R. A. Yost, C. G. Enke. Selected ion fragmentation with a tandem quadrupole mass spectrometer. J. Am. Chem. Soc. 100: 2274-2275 (1978).
[24] S. A. Chan, T. Y. Liu. The principle and applications of liquid chromatography tandem mass spectrometry. Instruments Today 129: 77-89 (2002). (In Chinese)
[25] F. W. McLafferty. Tandem Mass Spectrometry, John Wiely & Sons, Inc. New York (1983).
[26] P. Marquet. Is LC-MS suitable for a comprehensive screening of drugs and poisons in clinical toxicology? Ther. Drug Monit. 24: 125-133 (2002).
[27] M. Rittner, F. Pragst, W.R. Bork, J. Neumann. Screening method for seventy psychoactive drugs or drug metabolites in serum based on liquid chromatography-electrospray ionization mass spectrometry. J. Anal. Toxicol. 25: 115-124 (2001).
[28] N. Venisse, P. Marquet, E. Duchoslav, J. L. Dupuy, G. Lachatre. A general unknown screening procedure for drugs and toxic compounds in serum using liquid chromatography-electrospray-single quadrupole mass spectrometry. J. Anal. Toxicol. 27: 7-14 (2003).
[29] R. L. Fitzgerald, J. D. Rivera, D. A. Herold. Broad spectrum drug identification directly from urine, using liquid chromatography-tandem mass spectrometry. Clin. Chem. 45: 1224-1234 (1999).
[30] T. N. Decaestecker, K. M. Clauwaert, J. F. Van Bocxlaer, W. E. Lambert, E. G. Van den Eeckhout, C. H. Van Peteghem, A. P. De Leenheer. Evaluation of automated single mass spectrometry to tandem mass spectrometry function switching for comprehensive drug profiling analysis using a quadrupole time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 14: 1787-1792 (2000).
[31] T. N. Decaestecker, S. R. Vande Casteele, P. E. Wallemacq, C. H. Van Peteghem, D. L. Defore, J. F. Van Bocxlaer. Information-dependent acquisition-mediated LC-MS/MS screening procedure with semiquantitative potential. Anal. Chem. 76: 6365-6373 (2004).
[32] M. Gergov, I. Ojanpera, E. Vuori. Simultaneous screening for 238 drugs in blood by liquid chromatography-ionspray tandem mass spectrometry with multiple-reaction monitoring. J. Chronatogr B. 795: 41-53 (2003).
[33] C. A. Mueller, W. Weinmann, S. Dresen, A. Schreiber, M. Gergov. Development of a multi-target screening analysis for 301 drugs using a Qtrap liquid chromatography/tandem mass spectrometry system and automated library searching. Rapid Commun. Mass Spectrom. 19: 1332-1338 (2005).
[34] P. Marquet, F. Saint-Marcoux, T. N. Gamble, J. C. Y. Leblanc. Comparison of a preliminary procedure for the general unknown screening of drugs and toxic compounds using a quadrupole-linear ion-trap mass spectrometer with a liquid chromatography-mass spectrometry reference technique. J. Chronatogr. B. 789: 9-18 (2003).
[35] Y. Q. Xia, J. D. Miller, R. Bakhtiar, R. B. Franklin, D. Q. Liu. Use of a quadrupole linear ion trap mass spectrometer in metabolite identification and bioanalysis. Rapid Commun. Mass Spectrom. 17: 1137-1145 (2003).
[36] J. L. Josephs, M. Sanders. Creation and comparison of MS/MS spectral libraries using quadrupole ion trap and triple-quadrupole mass spectrometers. Rapid Commun. Mass Spectrom. 18: 743-759 (2004).
[37] G. L. Herrin, H. H. McCurdy, W. H. Wall. Investigation of an LC-MS-MS (QTrap) method for the rapid screening and identification of drigs in postmortem toxicology whole blood samples. J. Anal. Toxicol. 29: 599-606 (2005).
[38] F. L. Sauvage, F. Saint-Marcoux, B. Duretz, D. Deporte, G. Limoges, P. Marquet. Screening of drugs and toxic compounds with liquid chromatography-linear ion trap tandem mass spectrometry. Clin. Chem. 52: 1735-1742 (2006).
[39] C. Baumann, M. A. Cintora, M. Eichler, E. Lifante, W. Cooke, A. Pryzborowska, J. M. Halket. A library of atmospheric pressure ionization daughter ion mass spectra based on wideband excitation in an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 14: 349-356 (2000).
[40] W. Weinmann, M. Gergov, M. Goerner. MS/MS-libraries with triple quadrupole tandem mass spectrometers for drug identification and drug screening. Analysis 10: 934-941 (2000)
[41] S. Dresen, J. Kempf, W. Weinmann. Electrospray-ionization MS/MS library of drugs as database for method development and drug identification. Forensic Sci. Int. 161: 86-91 (2006).
[42] E. J. Cone, P. Welch, J. M. Mitchell, B. D. Paul. Forensic drug testing for opiates: I. Detection of 6-acetylmorphine in urine as an indicator of recent heroin exposure; drug and assay considerations and detection times. J. Anal. Toxicol. 15: 1-7 (1991).
[43] C. Girod, C. Staub. Acetylcodeine as a marker of illicit heroin in human hair: method validation and results of a pilot study. J. Anal. Toxicol. 25: 106-111 (2001).
[44] R. Brenneisen, F. Hasler, D. Wursch. Acetylcodeine as a urinary marker to differentiate the use of street heroin and pharmaceutical heroin. J. Anal. Toxicol. 25: 561-566 (2002).
[45] S. G. Phillips, K. R. Allen. Acetylcodeine as a marker of illicit abuse in oral fluid samples. J. Anal. Toxicol. 30: 370-374 (2006).
[46] D. L. Lin, R.M. Yin, H. C. Liu, Ray H Liu: Deposition characteristics of methamphetamine and amphetamine in fingernail clippings and hair sections. J. Anal. Toxicol. 28: 411-417 (2004).
[47] 「濫用藥物尿液檢驗作業準則」,行政院衛生署,民國97年10月24日修正施行。
[48] H. C. Liu, R. H. Liu, H. O. Ho, D. L. Lin. Development of an information–rich LC-MS/MS database for the analysis of drugs in postmortem specimens. Anal. Chem. 81: 9002-9011 (2009).
[49] Beginners Guide to UPLC - Ultra-Performance Liquid Chromatography ,美商沃特斯公司。
[50] Agilent 1200系列高分離度快速液相層析系統(RRLC),分析應用通訊,2006年第4期。
[51] I. S. Lurie, S. G. Toske. Applicability of ultra-performance liquid chromatography-tandem mass spectrometry for heroin profiling. J. Chromatogr. A. 1188(2): 322-326 (2008).
[52] M. C. Parkin, S. C. Turfus, N. W. Smith, J. M. Halket, R. A. Braithwaite, S. P. Elliott, M. D. Osselton, D. A. Cowan, A. T. Kicman. Detection of ketamine and its metabolites in urine ultra high pressure liquid chromatography-tandem mass spectrometry. J. Chromtogr. B. 876 (1): 137-142 (2008).
[53] T. Berg, E. Lundanes, A. S. Christophersen, D. H. Strand. Determination of opiates and cocaine in urine by high pH mobile phase reversed phase UPLC-MS/MS. J. Chromtogr. B. 877 (4): 421-432 (2009).
[54] K. J. Fountain, Z. Yin, D. M. Diehl. Simultaneous analysis of morphine-related compounds in plasma using mixed-mode solid phase extraction and UltraPerformance liquid chromatography-mass spectrometry. J. Sep. Sci. 32 (13): 2319-2326 (2009).
[55] H. K. Lee, C. S. Ho, Y. P. Iu, P. S. Lai, C. C. Shek, Y. C. Lo, H. B. Klinke, M. Wood. Development of a broad toxicological screening technique for urine using ultra-performance liquid chromatrography and time-of-flight mass spectrometry. Anal. Chim. Acta. 649(1): 80-90 (2009).
[56] N. Badawi, K. W. Simonsen, A. Steentoft, I. M. Bernhoft, K. Linnet. Simultaneous screening and quantification of 29 drugs of abuse in oral fluid by solid-phase extraction and Ultraperformance LC-MS/MS. Clin. Chem. 55: 2004-2018 (2009).
[57] G. Dowling, P. Gallo, L. Regan. Confirmatory analysis of firocoxib in bovine milk by rapid resolution liquid chromatography tandem mass spectrometry. J. Chromtogr. B. 877 (5-6): 541-546 (2009).
[58] G. Dowling, P. Gallo, E. Malone, L. Regan. Rapid confirmation analysis of non-steroidal anti-inflammatory drugs in bovine milk by rapid resolution liquid chromatography tandem mass spectrometry. J. Chromtogr. A. 1216: 8117-8131 (2009).
[59] R. C. Baselt, R. H. Crarey, Disposition of Toxic Drug and Chemicals in man, 4th ed. Chemical Toxicology Institute, Foster City, California (1995).
[60] Clarke. Isolation and Identification of Drugs, 2nd ed. The Pharmaceutical Press, London (1986).
[61] Mandatory Guidelines for Federal Workplace Drug Testing Programs; Notice, 1994, Federal Register Vol. 59. No. 110, 29908-29931.
[62] E. J. Cone, Current status on hair as a specimen for testing abused drugs. Symposium on Laboratory Certification for Urine Drug Testing, April 9-12, Taipei, Taiwan (1996).
[63] R. H. Liu, B. A. Goldberger. Handbook of Workplace Drug Testing, AACC Press, Washington, DC (1995).
[64] A. M. Baumgartner, P. F. Jones, W. A. Baumgartner, C. T. Black. Radioimmunoassay of hair for determining opiate-abuse histories. J. Nucl. Med. 20: 748-752 (1979)
[65] E. Klug. Determination of morphine in human hair. Z. Rechtsmed 84:189-193 (1980)
[66] O. Suzuki, H. Hattori, M. Asano. Detection of methamphetamine and amphetamine in a single human hair by gas chromatography/ chemical ionization mass spectrometry. J. Forensic Sci. 29: 611-617 (1984)
[67] M. Marigo, F. Tagliaro, C. Poiesi, S. Lafisca, C. Neri. Determination of morphine in the hair of heroin addicts by high performance liquid chromatography with fluorometric detection. J. Anal. Toxicol. 10: 158-161 (1986)
[68] T. Cairns, V. Hill, M. Schaffer, W. Thistle. Removing and identifying drug contamination in the analysis of human hair. Forensic Sci. Int. 145: 97-108 (2004).
[69] T. Cairns, V. Hill, M. Schaffer, W. Thistle. Amphetamines in washed hair of demonstrated users and workplace subjects. Forensic Sci. Int. 145: 137-142 (2004).
[70] T. Cairns, V. Hill, M. Schaffer, W. Thistle. Levels of cocaine and its metabolites in washed hair of demonstrated cocaine users and workplace subjects. Forensic Sci. Int. 145: 175-181 (2004).
[71] M. Schaffer, V. Hill, T. Cairns. Hair analysis for cocaine: the requirement for effective wash procedures and effects of drug concentration and hair porosity in contamination and decontamination. J. Anal. Toxicol. 29: 319-326 (2005).
[72] V. Hill, T. Cairns, M. Schaffer. Hair analysis for cocaine: factors in laboratory contamination studies and their relevance to proficiency sample preparation and hair testing practices. Forensic Sci. Int. 176: 23-33 (2008).
[73] R. Cordero, S. Paterson. Simultaneous quantification of opiates, amphetamines, cocaine and metabolites and diazepam and metabolite in a single hair sample using GC-MS. J. Chromatogr. B. 850: 423–431 (2007).
[74] K. Lachenmeier, F. Musshoff, B. Madea. Determination of opiates and cocaine in hair using automated enzyme immunoassay screening methodologies followed by gas chromatographic-mass spectrometric (GC-MS) confirmation. Forensic Sci. Int. 159: 189–199 (2006).
[75] J. Y. Kim, K. S. Jung, M. K. Kim, J. I. Lee, M. K. In. Simultaneous determination of psychotropic phenylalkylamine derivatives in human hair by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 21: 1705-1720 (2007).
[76] J. Y. Kim, S. I. Suh, M.K. In, B. C. Chung. Gas chromatography- high-resolution mass spectrometric method for determination of methamphetamine and its major metabolite amphetamine in human hair. J. Anal. Toxicol. 29: 370-375 (2005).
[77] A. Miki, M. Katagi, K. Zaitsu, H. Nishioka, H. Tsuchihashi. Development of a two-step injector for GC-MS with on-column derivatization, its application to the determination of amphetamine-type stimulants (ATS) in biological specimens. J. Chromatogr. B. 865: 25-32 (2008).
[78] G. Frison, L. Tedeschi, D. Favretto, A. Reheman, S. D. Ferrara. Gas chromatography/mass spectrometry determination of amphetamine- related drugs and ephedrines in plasma, urine and hair samples after derivatization with 2,2,2-trichloroethyl chloroformate. Rapid Commun. Mass Spectrom. 19: 919-927 (2005).
[79] L. Martins, M. Yegles, H. Chung, R. Wennig. Simultaneous enantioselective determination of amphetamine and congeners in hair specimens by negative chemical ionization gas chromatography-mass spectrometry. J. Chromatogr. B. 825: 57-62 (2005).
[80] P. Kintz. Bioanalytical procedures for detection of chemical agents in hair in the case of drug-facilitated crimes. Anal. Bioanal. Chem. 388: 1467-74 (2007).
[81] R. Stanaszek, W. Piekoszewski. Simultaneous determination of eight underivatized amphetamines in hair by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS). J. Anal. Toxicol. 28: 77-85 (2004).
[82] K. Nishida, S. Itoh, N. Inoue, K. Kudo, N. Ikeda. High-performance liquid chromatographic-mass spectrometric determination of methamphetamine and amphetamine enantiomers, desmethylselegiline and selegiline, in hair samples of long-term methamphetamine abusers or selegiline users. J. Anal. Toxicol. 30: 232-237 (2006).
[83] M. Kłys, S. Rojek, J. Kulikowska, E. Bozek, M. Scisłowski. Usefulness of multi-parameter opiates-amphetamines-cocainics analysis in hair of drug users for the evaluation of an abuse profile by means of LC-APCI-MS-MS. J. Chromatogr. B. 854: 299-307 (2007).
[84] R. Kronstrand, I. Nyström, J. Strandberg, H. Druid. Screening for drugs of abuse in hair with ion spray LC-MS-MS. Forensic Sci. Int. 145: 183-190 (2004).
[85] K. B. Scheidweiler, M. A. Huestis. Simultaneous quantification of opiates, cocaine, metabolites in hair by LC-APCI-MS/MS. Anal. Chem. 76: 4358-4363 (2004).
[86] H. Miyaguchi, M. Kakuta, Y. T. Iwata, H. Matsuda, H. Tazawa, H. Kimura, H. Inoue. Development of a micropulverized extraction method for rapid toxicological analysis of methamphetamine in hair. J. Chromatogr. A. 1163: 43-48 (2007).
[87] S. Hegstad, H. Z. Khiabani, L. Kristoffersen, N. Kunøe, P. P. Lobmaier, A. S. Christophersen. Drug screening of hair by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 32: 364-372 (2008).
[88] F. Musshoff, K. Lachenmeier, H. Wollersen, D. Lichtermann, B. Madea. Opiate concentrations in hair from subjects in a controlled heroin-maintenance program and from opiate-associated fatalities. J. Anal. Toxicol. 29: 345-352 (2005).
[89] D. L. Lin, R. M. Yin, R. H. Liu. Gas chromatography-mass spectrometry (GC-MS) analysis of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymeth- amphetamine in hman hair and hair sections. J. Food Drug Anal. 13: 193-200 (2005).
[90] R. H. Liu, H. C. Liu, D. L. Lin. Distribution of methylenedioxy- methamphetamine (MDMA) and methylenedioxyamphetamine (MDA) in postmortem and antemortem specimens. J. Aanl. Toxicol. 30: 545-550 (2006).
[91] S. M. Wang, C. C. Lin, T. L. Li, C. Y. Shih, Y. S. Giang, R. H. Liu. Distribution characteristics of methamphetamine and amphetamine in urine and hair specimens collected from alleged methamphetamine users in northern Taiwan. Anal. Chim. Acta. 576: 140-146 (2006).
[92] Y. H. Wu, K. L. Lin, S. C. Chen, Y. Z. Chang. Integration of GC/EI-MS and GC/NCI-MS for simultaneous quantitative determination of opiates, amphetamines, MDMA, ketamine, metabolites in human hair. J. Chromatogr. B. 870: 192-202 (2008).
[93] Y. H. Wu, K. L. Lin, S. C. Chen, Y. Z. Chang. Simultaneous quantitative determination of amphetamines, ketamine, opiates and metabolites in human hair by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 22: 887-897 (2008).
[94] D. K. Huang, C. Liu, M. K. Huang, C. S. Chien. Simultaneous determination of morphine, codeine, 6-acetylmorphine, cocaine and benzoylecgonine in hair by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23: 957-962 (2009).
[95] D. L. Buhrman, P. I. Price, P. J. Rudewicz. Quantitation of SR27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry : A study of ion supression. J. Am. Soc. Mass Spectrom. 7: 1099-1105 (1996).
[96] R. King, R. Bonfiglio, C. Fernandez-Metzler. Mechnistic investigation of ionization suppression in electrospray ionization. J. Am. Soc. Mass Spectrom. 11: 942-950 (2000).
[97] C. Y. Chen. Matrix effects on liquid chromatography/mass spectrometry and how to tackle the problems. Chemistry (The Chinese Chemical Society, Taipei) 65: 151-155 (2007).
[98] Y. H. Lin, C. Y. Chen, G. S. Wang. Analysis of steroid estrogens in water using liquid chromatography/tandem mass spectrometry with chemical derivatizations. Rapid Commun. Mass Spectrom. 21: 1973-1983 (2007).
[99] A. Kloepfer, J. B. Quintana, T. Reemtsma. Operational options to reduce matrix effects in liquid chromatography-electrospray ionization-mass spectrometry analysis of aqueous environmental samples. J. Chromatogr. A 1067: 153-160 (2005).
[100] F. M. Wylie, H. Torance, R. A. Anderson, J. S. Oliver. Drugs in oral fluid part I. validation of an analytical procedure for licit and illicit drugs in oral fluid. Forensic Sci. Int. 150: 191-198 (2005).
[101] M. A. Huestis, E. J. Cone, C. J. Wang, A. Umbricht, L. K. Preston. Monitoring opiate use in substance abuse treatment patients with sweat and urine drug testing. J. Anal. Toxicol. 24: 509-521 (2000).
[102] J. T. Cody. Specimen adulteration in drug urinalysis. Forensic Sci. Rev. 2: 63-75 (1990).
[103] E. J. Cone. Legal, workplace, and treatment drug testing with alternate biological matrices on a global scale. Forensic Sci. Int. 121: 7-15 (2001).
[104] T. Inoue, S. Seta. Analysis of drugs in unconventional samples. Forensic Sci. Rev. 4: 89-107 (1992).
[105] D. A. Kidwell, J. C. Holland, S. Athanaselis. Testing for drugs of abuse in saliva and sweat. J. Chromatogr. B Biomed. Sci. Appl. 713: 111-135 (1998).
[106] W. Schramm, R. H. Smith, P .A. Craig, D. A. Kidwell. Drugs of abuse in Saliva: A Review. J. Anal. Toxicol. 16: 1-9 (1992).
[107] J. K. Aps, L. C. Martens. Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci. Int. 150: 119–131 (2005).
[108] E. J. Cone, L. Presley, M. Lehrer, W. Seiter, M. Smith, K. W. Kardos, D. Fritch, S. Salamone, S. Niedbala, Oral fluid testing for drugs of abuse: positive prevalence rates by Intercept® immunoassay screening and GC-MS/MS confirmation and suggested cut-off concentrations, J. Anal. Toxicol. 26: 541-546 (2002).
[109] M. Wood, G. De Boeck, N. Samyn, M. Morris, D. P. Cooper, R. A. A. Maes, E. A. De Bruijn, Development of a rapid and sensitive method for the quantitation of amphetamines in human plasma and oral fluid by LC-MS/MS, J. Anal. Toxicol. 27: 78-87 (2003).
[110] K. A. Mortier, K. E. Maudens, W. E. Labert, K. M.Clauwaert, J. F. Van Boxlaer, D. L. Deforce, C. H. Van Peteghem, A. P. DeLeenheer, Simultaneous, quantitative determination of opiates, amphetamines, cocaine and benzoylecgonine in oral fluid by liquid chromatography quadrupole-time-of-flight mass spectrometry, J. Chromatogr. B 779: 321-330 (2002).
[111] R. Dams, C. M. Murphy, R. E. Choo, W. E. Lambert, A. P. D. Leenheer, M. A. Huestis. LC-Atmospheric pressure chemical ionization-MS/MS analysis of multiple illicit drugs, methadone, and their metabolites in oral fluid following protein precipitation. Anal. Chem. 75: 798-804 (2003).
[112] M. Wood, M. Laloup, M. M. Ramirez Fernandez, K. M. Jenkins, M. S. Young, J. G. Ramaekers, G. D. Boeck, N. Samyn. Quantitative analysis of multiple illicit drugs in preserved oral fluid by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Forensic Sci. Int. 150: 227-238 (2005).
[113] P. Kintz, M. Villain, M. Concheiro, Vincent Cirimele. Screening and confirmation method for benzodiazepines and hypnotics in oral fluid by LC-MS/MS. Forensic Sci. Int. 150: 213-220 (2005).
[114] E. L. Oiestad, U. Johansen, A. S. Christophersen. Drug screening of preserved oral fluid by liquid chromatography-tandem mass spectrometry. Clin. Chem. 53: 300-309 (2007).
[115] B. Link, M. Haschke, M. Wenk, S. Krahenbuhl. Determination of midazolam and its hydroxyl metabolites in human plasma and oral fluid by liquid chromatography/electrospray ionization ion trap tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21: 1531-1540 (2007).
[116] S. S. Simoes, A. C. Ajenjo, J. M. Franco, D. N. Vieira, M. J. Dias. Liquid chromatography/tandem mass spectrometry for the qualitative and quantitative analysis of illicit drugs and medicines in preserved oral fluid. Rapid Commun. Mass Spectrom. 23: 1451-1460 (2009).
[117] M. Sato, M. Hida, H. Nagase. Analysis of dimethylamphetamine and its metabolites in human urine by liquid chromatography-electrospray ionization-mass spectrometry with direct sample injection. Forensic Sci. Int. 128: 146-154 (2002).
[118] M. Kollroser, C. Schober. Simultaneous determination of seven tricylic antidepressant drugs in human plasma by direct-injection HPLC- APCI-MS-MS with an ion trap detector. Ther. Drug Monit. 24: 537-544 (2002).
[119] M. Kollroser, C. Schober. Direct-injection high performance liquid chromatography ion trap mass spectrometry for the quantitative determination of olanzapine, clozapine and N-desmethylclozapine in human plasma. Rapid Commun. Mass Spectrom. 16: 1266-1272 (2002).
[120] R. Dams, C. M. Murphy, W. E. Lambert, M. A. Huestis. Urine drug testing for opioids, cocaine, and metabolites by direct injection liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17: 1665-1670 (2003).
[121] H. K. Nordgren, O. Beck. Multicomponent screening for drugs of abuse direct analysis of urine by LC-MS-MS. Ther. Drug Monit. 26: 90-97 (2004).
[122] H. K. Nordgren, P. Holmgren, P. Liljeberg, N. Eriksson, O. Beck. Application of direct urine LC-MS-MS analysis for screening of novel substances in drug abusers. J. Anal. Toxicol. 29: 234-239 (2005).
[123] L. E. Edinboro, R. C. Backer, A. Poklis. Direct analysis of opiates in urine by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 29: 704-710 (2005). |
顯示於類別: | [藥學系] 博碩士論文
|
在TMUIR中所有的資料項目都受到原著作權保護.
|