資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/36382
|
題名: | GABA抑制血小板凝集作用之機轉探討 |
作者: | 江詠臻 |
貢獻者: | 醫學科學研究所 |
日期: | 2010 |
上傳時間: | 2010-10-20 12:50:30 (UTC+8) |
摘要: | GABA(γ-aminobutyric acid) 為一種神經傳導物質,其化學構造是胺基酸類,主要存在於哺乳類的中樞神經系統。當GABA接上細胞的GABA 受體後,會打開氯離子通道,因此抑制動作電位的形成。有研究指出在血小板內可能有GABA的存在,但是關於GABA對於血小板功能的影響仍未被明確的探討,因此本篇研究主要是想探討GABA對於血小板活化過程的影響以及其訊息傳遞方面的抑制機轉。而由本研究的實驗結果顯示,利用免疫金標記染色技術可以証實GABA存在於血小板中,且主要分布於細胞質中。GABA在低濃度時(0.5-1 ?嵱),對於由collagen引起的人類血小板凝集反應及ATP的釋放會有抑制的作用。GABA (0.5和1?n?嵱)可以抑制由collagen所引起PLC??2的磷酸化及Akt的磷酸化;而對於p38 MAPK、ERK1/2及JNK1/2的磷酸化,GABA (0.5和1?n?嵱)也會有抑制的作用。而不論是由collagen或是PDBu所刺激的47kDa蛋白質磷酸化都可以被GABA (0.5和1?n?嵱)所抑制。此外,GABA (0.5和1?n?嵱)會增加vasodilator -stimulated phosphoprotein的磷酸化。由以上的實驗結果,GABA抑制collagen誘發的血小板凝集可能會涉及下列路徑:GABA會經由PLC??2-PKC來抑制血小板的活化;GABA也會抑制由collagen所引起的MAPKs及Akt磷酸化,最後抑制血小板的凝集反應。另外,GABA可能藉由影響血小板內cyclic AMP的含量,而促進VASP的磷酸化,進而抑制血小板的活性。
γ-aminobutyric acid(GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and chemically it is an amino acid. In human, GABA acts at inhibitory synapses in the brain by binding to GABA receptors. This binding causes the opening of chloride ion channels to allow the flow of negatively charged chloride ions into the cell. Recent studies have shown that GABA can be found in human platelets. However, the mechanisms involved in the effect on platelet activity of GABA are still unclear, and we are interested in investigating its effect on cellular signal transduction during the process of platelet activation. In this study, we examined the intra-platelet GABA distribution using a gold labeling technique and noted that GABA was predominantly localized in the cytoplasm of resting platelets. GABA (0.5-1 ?嵱) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). We also found that GABA (0.5-1 ?嵱) can inhibit PLCγ2 activity and Akt phosphorylation stimulated by collagen (1 ?慊/ml). Moreover, GABA (0.5 and 1 ?嵱) was found to significantly inhibit 47kDa proteins phosphorylation induced by collagen (1 ?慊/ml) and PDBu (150 nM). In addition, GABA (0.5-1 ?嵱) inhibited collagen (1 ?慊/ml) induced phosphorylation of p38 MAPK, ERK1/2 and JNK1/2. On the other hand, GABA (0.5 and 1 ?嵱) can also induce vasodilator-stimulated phosphoprotein phosphorylation. In conclusion, our study suggested for the first time that inhibitory effect of GABA in platelet activation may involve in the following: GABA may regulate the PLCγ2-PKC pathway to inhibit platelet aggregation. GABA also inhibited MAPKs and Akt phosphorylaion. On the other hand, GABA may involve in increasing of cyclic AMP, followed by triggered VASP phosphorylation, and finally inhibited platelet aggregation. These results imply that GABA not only has inhibitory action on neurons, but has anti-platelet activity. GABA may be used as an effective tool in treating pathological disorder associated with platelet hyperaggregability clinically. |
關聯: | 94頁 |
描述: | 中文摘要……………………………………… 2
英文摘要……………………………………… 4
縮寫表………………………………………… 6
一.緒論……………………………………… 9
1-1 研究背景 ………………………… 9
1-2 研究動機及目的………………… 22
1-3 研究範圍………………………… 22
二.實驗材料與方法……………………… 23
2-1 實驗材料………………………… 23
2-2 實驗方法………………………… 30
2-3 數據分析…………………………… 43
三.結果……………………………………… 44
四.討論……………………………………… 54
五.結論……………………………………… 63
六.表………………………………………… 64
七.圖………………………………………… 65
八.參考文獻………………………………… 85
Adam F, Kauskot A, Rosa JP, Bryckaert M. Mitogen-activated protein kinases in hemostasis and thrombosis. J Thromb Haemost 2008, 6:2007-2016.
Aszódi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, Offermanns S, Fässler R. The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J 1999, 18:37-48.
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003, 4:517-529.
Born GVR, Cross MJ. The aggregation of blood platelets. J Physiol 1963, 168:178-195.
Börsch-Haubold AG, Kramer RM, Watson SP. Phosphorylation and activation of cytosolic phospholipase A2 by 38-kDa mitogen-activated protein kinase in collagen-stimulated human platelets. Eur J Biochem 1997, 245:751-759.
Bugaud F, Nadal-Wollbold F, Lévy-Toledano S, Rosa JP, Bryckaert M. Regulation of c-jun-NH2 terminal kinase and extracellular-signal regulated kinase in human platelets. Blood 1999, 94:3800-3805.
Canobbio I, Reineri S, Sinigaglia F, Balduini C, Torti M. A role for p38 MAP kinase in platelet activation by von Willebrand factor. Thromb Haemost 2004, 91:102-110.
Chiang TM, Cole F, Woo-Rasberry V, Kang ES. Role of nitric oxide synthase in collagen-platelet interaction: involvement of platelet nonintegrin collagen receptor nitrotyrosylation. Thromb Res 2001;102:343-352.
Cho MJ, Liu J, Pestina TI, Steward SA, Thomas DW, Coffman TM, Wang D, Jackson CW, Gartner TK. The roles of alpha IIb beta 3-mediated outside-in signal transduction, thromboxane A2, and adenosine diphosphate in collagen-induced platelet aggregation. Blood 2003, 101:2646-2651.
Chou DS, Hsiao G, Shen MY, Tsai YJ, Chen TF, Sheu JR. ESR spin trapping of a carbon-centered free radical from agonist-stimulated human platelets. Free Radic Biol Med 2005, 39:237-248.
Cobbold PH, Rink TJ. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J 1987, 248:313-328.
Coles B, Bloodsworth A, Eiserich JP, Coffey MJ, McLoughlin RM, Giddings JC, Lewis MJ, Haslam RJ, Freeman BA, O'Donnell VB. Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cyclic AMP. J Biol Chem 2002, 277:5832-5840.
Constantin S, Jasoni CL, Wadas B, Herbison AE. Gamma-aminobutyric acid and glutamate differentially regulate intracellular calcium concentrations in mouse gonadotropin-releasing hormone neurons.
Endocrinology 2010, 151:262-70.
Dale GL, Friese P, Batar P, Hamilton SF, Reed GL, Jackson KW, Clemetson KJ, Alberio L. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 2002, 415:175-179.
Dangelmaier C, Jin J, Daniel JL, Smith JB, Kunapuli SP. The P2Y1 receptor mediates ADP-induced p38 kinase-activating factor generation in human platelets. Eur J Biochem 2000, 267:2283-2289.
DeLuca M, McElory WD. Purrification and proteins of firefly luciferase. Methods Enzymol 1978, 57:3-15.
Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest 2004, 113:340-345.
Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 1999, 5:1199-1202.
Fang, K., Ragsdale, N. V., Carey, R. M., MacDonald, T. and Gaston, B. Reductive assays for S-nitrosothiols: implications for measurements in biological systems. Biochem Biophys Res Commun 1998;252:535-540.
Fonlupt P, Croset M, Lagarde M. Benzodiazepine analogues inhibit arachidonate-induced aggregation and thromboxane synthesis in human platelets. Br J Pharmacol 1990, 101:920-4.
Gachet C. Platelet activation by ADP: the role of ADP antagonists. Ann Med 2000, 1:15-20.
Garcia A, Shankar H, Murugappan S, Kim S, Kunapuli SP. Regulation and functional consequences of ADP receptor-mediated ERK2 activation in platelets. Biochem J 2007, 404:299-308.
Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ Res 2007, 101:654-662.
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985, 260:3440-3450.
Halbrügge M, Friedrich C, Eigenthaler M, Schanzenbächer P, Walter U. Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 1990, 265:3088-3093.
Iuliano L, Pedersen JZ, Pratico D, Rotilio G, Violi F. Role of hydroxyl radicals in the activation of human platelets. Eur J Biochem 1994;221:695-704.
Jennings LK. Role of platelets in atherothrombosis. Am J Cardiol 2009, 103:4A–10A.
Kaneez FS, Saeed SA. Investigating GABA and its function in platelets as compared to neurons. Platelets 2009, 20:328-333.
Kauskot A, Adam F, Mazharian A, Ajzenberg N, Berrou E, Bonnefoy A, Rosa JP, Hoylaerts MF, Bryckaert M. Involvement of the mitogen-activated protein kinase c-Jun NH2-terminal kinase 1 in thrombus formation. J Biol Chem 2007, 282:31990-31999.
Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 2006, 125:733-747.
Kornecki E, Niewiarowski S, Morinelli TA, Kloczewiak M. Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann's thrombasthenic platelets. J Biol Chem 1981, 256:5696-5701.
Kramer RM, Roberts EF, Strifler BA, Johnstone EM. Thrombin induces activation of p38 MAP kinase in human platelets. J Biol Chem 1995, 270:27395-27398.
Kramer RM, Roberts EF, Um SL, Börsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem 1996, 271:27723-27729.
Kramer RM, Roberts EF, Hyslop PA, Utterback BG, Hui KY, Jakubowski JA. Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets. Evidence for activation of cPLA2 independent of the mitogen-activated protein kinases ERK1/2. J Biol Chem 1995, 270:14816-14823.
Kroner C, Eybrechts K, Akkerman JW. Dual regulation of platelet protein kinase B. J Biol Chem 2000, 275:27790-27798.
Spergel DJ, Krsmanovic LZ, Stojilkovic SS, Catt KJ. L-type Ca2+ channels mediate joint modulation by gamma-amino-butyric acid and glutamate of [Ca2+]i and neuropeptide secretion in immortalized gonadodropin-releasing hormone neurons. Neuroendocrinology 1995, 61:499-508.
Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001, 114:2903-2910.
Li Z, Ajdic J, Eigenthaler M, Du X. A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans. Blood 2003, 101:4423-4429.
Luscher EF, Weber S. The formation of the haemostatic plug--a special case of platelet aggregation. An experiment and a survey of the literature. Thromb Haemost 1993, 70:234-237.
Madsen KK, Larsson OM, Schousboe A. Regulation of excitation by GABA neurotransmission: focus on metabolism and transport. Results Probl Cell Differ 2008, 44:201-21.
Mazharian A, Roger S, Maurice P, Berrou E, Popoff MR, Hoylaerts MF, Fauvel-Lafeve F, Bonnefoy A, Bryckaert M. Differential Involvement of ERK2 and p38 in platelet adhesion to collagen. J Biol Chem 2005, 280:26002-26010.
Morello F, Perino A, Hirsch E. Phosphoinositide 3-kinase signalling in the vascular system. Cardiovasc Res 2009, 82:261-271.
Moroi M, Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res 2004, 114:221-233.
Mustard, JF, Perry DW, Ardlie NG, Packham MA. Preparation of suspensions of washed platelets from humans. Br J Haematol 1972, 22:193-204.
Nadal-Wollbold F, Pawlowski M, Lévy-Toledano S, Berrou E, Rosa JP, Bryckaert M. Platelet ERK2 activation by thrombin is dependent on calcium and conventional protein kinases C but not Raf-1 or B-Raf. FEBS Lett 2002, 531:475-482.
Nieswandt B, Brakebusch C, Bergmeier W, Schulte V, Bouvard D, Mokhtari-Nejad R, Lindhout T, Heemskerk JW, Zirngibl H, Fässler R. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 2001, 20:2120-2130.
O’Brien JR. Platelet aggregation: Part II Some results from a new method of study. J Clin Pathol 1962, 15:452-5.
Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF. P2X(1)-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood 2002, 100:2499-2505.
Pan CF, Shen MY, Wu CJ, Hsiao G, Chou DS, Sheu JR. Inhibitory mechanisms of gabapentin, an antiseizure drug, on platelet aggregation. J Pharm Pharmacol 2007, 59:1255-1261.
Papkoff J, Chen RH, Blenis J, Forsman J. p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol 1994, 14:463-472.
Patricia JK, Leslie VP. The α2β1 Integrin Is a Necessary Co-receptor for Collagen-induced Activation of Syk and the Subsequent Phosphorylation of Phospholipase Cγ2 in platelets. J Biol Chem 1996, 271:26668-26676.
Quinton TM, Kim S, Dangelmaier C, Dorsam RT, Jin J, Daniel JL, Kunapuli SP. Protein kinase C- and calcium-regulated pathways independently synergize with Gi pathways in agonist-induced fibrinogen receptor activation. Biochem J 2002, 368:535-543.
Radomski MW, Palmer RM, Moncada S. Characterization of the L-arginine:nitric oxide pathway in human platelets. Br J Pharmacol 1990;101:325-328.
Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A 1990;87:5193-5197.
Radomski MW, Palmer RM, Moncada S. Modulation of platelet aggregation by an L-arginine-nitric oxide pathway. Trends Pharmacol Sci 1991;12:87-88.
Rainesalo S, Keränen T, Saransaari P, Honkaniemi J. GABA and glutamate transporters are expressed in human platelets. Brain Res Mol Brain Res. 2005, 141:161-5.
Rajtar G, Zółkowska D, Kleinrok Z. Effect of diazepam and clonazepam on the function of isolated rat platelet and neutrophil. Med Sci Monit 2002, 8:PI37-44.
Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002, 8:1227-1234.
Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 2003, 1:1335–1342.
Saklatvala J, Rawlinson L, Waller RJ, Sarsfield S, Lee JC, Morton LF, Barnes MJ, Farndale RW. Role for p38 mitogen-activated protein kinase in platelet aggregation caused by collagen or a thromboxane analogue. J Biol Chem 1996, 271:6586-6589.
Sato K, Ozaki H, Karaki H. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther 1988, 246:294-300.
Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998, 94:657-666.
Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998, 91:2645-2657.
Shen MY, Hsiao G, Fong TH, Chen HM, Chou DS, Lin CH, Sheu JR, Hsu CY. Amyloid beta peptide-activated signal pathways in human platelets. Eur J Pharmacol 2008, 588:259-266.
Sheu JR, Teng CM, Huang TF. Triflavin, an RGD-containing antiplatelet peptide, binds to GpIIIa of ADP-stimulated platelets. Biochem Biophys Res Commun 1992, 189:1236-1242.
Sheu JR, Lee CR, Lin CH, Hsiao G, Ko WC, Chen YC, Yen MH. Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets. Thromb Haemost 2000, 83:777-784.
Shiah IS, Yatham LN, Gau YC, Baker GB. Effect of lamotrigine on plasma GABA levels in healthy humans. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27:419-23.
Song Y, Shenwu M, Dhossche DM, Liu YM. A capillary liquid chromatographic/tandem mass spectrometric method for the quantification of gamma-aminobutyric acid in human plasma and cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 814:295-302.
Stojanovic A, Marjanovic JA, Brovkovych VM, Peng X, Hay N, Skidgel RA, Du X. A phosphoinositide 3-kinase-AKT-nitric oxide-cGMP signaling pathway in stimulating platelet secretion and aggregation. J Biol Chem 2006, 281:16333-16339.
Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 1997, 277:567-570.
Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost 2009, 7:1057-1066.
Waldmann R, Nieberding M, Walter U. Vasodilator-stimulated protein phosphorylation in platelets is mediated by cAMP- and cGMP-dependent protein kinases. Eur J Biochem 1987, 167:441-448.
Walter U, Eigenthaler M, Geiger J, Reinhard M. Role of cyclic nucleotide-dependent protein kinases and their common substrate VASP in the regulation of human platelets. Adv Exp Med Biol 1993, 344:237-249.
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 2002, 213:1-47.
Watson SP, Gibbins J. Collagen receptor signalling in platelets: extending the role of the ITAM. Immunol Today 1998, 19:260 -264.
Wong CG, Bottiglieri T, Snead OC 3rd. GABA, gamma- hydroxybutyric acid, and neurological disease. Ann Neurol 2003, 54:S3-12.
Xiang YY, Wang S, Liu M, Hirota JA, Li J, Ju W, Fan Y, Kelly MM, Ye B, Orser B, O'Byrne PM, Inman MD, Yang X, Lu WY. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 2007, 13:862-867
Yap CL, Anderson KE, Hughan SC, Dopheide SM, Salem HH, Jackson SP. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3). Blood 2002, 99:151-158. |
顯示於類別: | [醫學科學研究所] 博碩士論文
|
在TMUIR中所有的資料項目都受到原著作權保護.
|