資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/36371
|
題名: | 探討結締組織生長因子CTGF刺激單核球細胞所需之細胞表面分子 |
作者: | 邵彥豪 |
貢獻者: | 醫學科學研究所 |
關鍵詞: | 結締組織生長因子 單核球細胞 |
日期: | 2010 |
上傳時間: | 2010-10-20 12:43:20 (UTC+8) |
摘要: | 結締組織生長因子,屬於分泌型蛋白CCN家族的一員,在細胞及細胞外基質交互作用中扮演重要的角色,其主要功能在於調控細胞分化、增生、黏附、移動、凋亡、纖維化、血管新生及胞外基質的生成等;在本實驗室先前的研究中已知,結締組織生長因子會引發人類CD14+單核球細胞提升IL-8的分泌。然而,結締組織生長因子如何從胞外傳遞訊息至胞內活化訊息傳遞路徑的過程目前尚不清楚,是否經由細胞表面的醣類或特殊受體亦未可知。在此我們檢視細胞表面的醣類fibronectin、heparin和heparan sulfate與CTGF的交互作用,發現Heparin sulfate proteoglycans參與CTGF之刺激作用。為了進一步鑑定其受體,首先以integrin ??2次單位的拮抗性抗體來觀察細胞膜上的integrin是否為CTGF的特殊受體;而後使用TrkA磷酸化的抑制劑K-252a,檢視TrkA是否參與CTGF引發IL-8分泌過程;最後利用乳鐵蛋白與CTGF競爭LRP1結合位置以辨別LRP1之重要性。為了解CTGF是否經由胞吞作用來傳遞訊息,使用胞吞作用的抑制劑Phenylarsine Oxide及核內體抑制劑NH4Cl以觀察其對CTGF刺激細胞產生IL-8之影響。結果顯示在人類CD14+單核球細胞中,CTGF可能藉由結合LRP1及TrkA,並利用胞吞作用進入細胞,經過核內體的消化代謝後,接著活化p38、ERK及JNK的MAPK訊息傳導路徑,最終刺激IL-8的分泌提升。
Connective Tissue Growth Factor (CTGF), is one member of secretory protein CCN family that mediates the interaction of cell surface and extracellular matrix (ECM). Among the many function of CTGF are angiogenesis, adhesion, osteogenesis, tissue repair, fibrosis, proliferation, migration, and differentiation, CTGF is also a pathogenic factor in variety of fibrotic disorders. In our previous study, CTGF has been found to induce IL-8 secretion on human CD14+ monocytes. However, the signal transduction pathway of CTGF and the specific receptor recognized by CTGF on human monocytes are still poorly understood. In this study, we investigated the interaction between surface fibronectin, heparin, heparan sulfate and CTGF, found heparin sulfate proteoglycans involved in CTGF function. To further identify the receptor of CTGF, we used antagonist of integrin ??2 to define whether integrin ??2 is the specific receptor for CTGF. Then we utilized TrkA inhibitor K-252a to identify whether TrkA participate in the IL-8 secretion pathway induced by CTGF. Finally we used lactoferrin competed with CTGF binding to LRP1 to clarifying whether LRP1 is the receptor for CTGF. Furthermore, we utilized additional endocytosis inhibitor Phenylarsine Oxide and endosome inhibitor NH4Cl to identify whether IL-8 induction through endocytosis. Data suggested that on human CD14+ monocytes, CTGF might bind to LRP1 and TrkA then internalized into cells by endocytosis, combined with endosome then activated MAP Kinase p38, ERK and JNK eventually increased IL-8 secretion. |
關聯: | 75頁 |
描述: | 謝誌 4
摘要 5
Abstract 6
縮寫 7
引言 9
一、CCN蛋白與結締組織生長因子CCN2/CTGF 9
1. CCN蛋白家族 9
2. CCN家族的功能 10
3.結締組織生長因子CCN2/CTGF 13
二、Heparin Sulfate Proteoglygans(HSPGs) 15
三、Integrins 16
四、TrkA(Tropomyosin-related kinase A) 17
五、LRP(LDL Receptor-related Protein) 18
六、CXCL8/Interleukin-8(IL-8) 19
動機與目的 21
材料與方法 22
A、材料 22
一、試劑與溶液 22
二、培養基與培養液 28
三、抗體 28
B、方法 29
一、細胞培養 29
二、人類CD14+單核球細胞純化 29
三、流式細胞儀分析(Flow Cytometry Analysis) 30
四、IL-8 Enzyme-Linked Immunobent Assay(ELISA) 30
五、細胞溶質的收集 31
六、BCA assay蛋白質定量分析 31
七、西方墨點法(Western Blotting) 32
八、雷射共軛焦顯微鏡(Confocal Microscopy) 33
實驗結果與分析 35
一、Glycosamonoglycans可與CTGF產生交互作用 35
二、Heparinase對CTGF刺激人類CD14+單核球細胞分泌IL-8的影
響 36
三、Integrin subunit ??2不參與CTGF刺激IL-8分泌的過程 37
四、TrkA不會影響CTGF刺激IL-8的分泌提升 37
五、LRP可結合CTGF參與刺激IL-8分泌的過程 38
六、由螢光顯微鏡證實CTGF會藉由胞吞作用進入到單核球內 38
七、胞吞作用的抑制劑PAO可抑制CTGF對人類CD14+單核球細胞
的刺激 39
八、CTGF刺激IL-8分泌上升須經由Endosome 40
九、CTGF經由活化p38、ERK及JNK誘發IL-8分泌 40
討論 42
附圖 49
參考文獻 67
1. Brigstock, D.R., et al., Proposal for a unified CCN nomenclature. Mol Pathol, 2003. 56(2): p. 127-8.
2. Lau, L.F. and S.C. Lam, The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res, 1999. 248(1): p. 44-57.
3. Brigstock, D.R., The CCN family: a new stimulus package. J Endocrinol, 2003. 178(2): p. 169-75.
4. Chen, C.C., N. Chen, and L.F. Lau, The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem, 2001. 276(13): p. 10443-52.
5. Bork, P., The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett, 1993. 327(2): p. 125-30.
6. Chen, Y., et al., Connective tissue growth factor is secreted through the Golgi and is degraded in the endosome. Exp Cell Res, 2001. 271(1): p. 109-17.
7. Leask, A. and D.J. Abraham, All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci, 2006. 119(Pt 23): p. 4803-10.
8. Perbal, B.a.T., M., CCN Proteins: A New Family of Cell Growth and Differentiation Regulators. (1st Edn). Imperial College Press, 2005.
9. Grotendorst, G.R., Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev, 1997. 8(3): p. 171-9.
10. Kubota, S. and M. Takigawa, CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis, 2007. 10(1): p. 1-11.
11. Parisi, M.S., et al., Expression and regulation of CCN genes in murine osteoblasts. Bone, 2006. 38(5): p. 671-7.
12. Pala, D., et al., Focal adhesion kinase/Src suppresses early chondrogenesis: central role of CCN2. J Biol Chem, 2008. 283(14): p. 9239-47.
13. Lin, C.G., et al., CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem, 2003. 278(26): p. 24200-8.
14. Perbal, B., CCN proteins: multifunctional signalling regulators. Lancet, 2004. 363(9402): p. 62-4.
15. Rachfal, A.W. and D.R. Brigstock, Structural and functional properties of CCN proteins. Vitam Horm, 2005. 70: p. 69-103.
16. Yosimichi, G., et al., CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem, 2001. 268(23): p. 6058-65.
17. Baguma-Nibasheka, M. and B. Kablar, Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev Dyn, 2008. 237(2): p. 485-93.
18. Kennedy, L., et al., CCN2 is necessary for the function of mouse embryonic fibroblasts. Exp Cell Res, 2007. 313(5): p. 952-64.
19. Bleau, A.M., et al., Antiproliferative activity of CCN3: involvement of the C-terminal module and post-translational regulation. J Cell Biochem, 2007. 101(6): p. 1475-91.
20. Planque, N. and B. Perbal, A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int, 2003. 3(1): p. 15.
21. Chen, P.P., et al., Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS ONE, 2007. 2(6): p. e534.
22. Gardini, A., et al., Expression of connective tissue growth factor is a prognostic marker for patients with intrahepatic cholangiocarcinoma. Dig Liver Dis, 2005. 37(4): p. 269-74.
23. Perbal, B., The CCN3 protein and cancer. Adv Exp Med Biol, 2006. 587: p. 23-40.
24. Perbal, B., The CCN3 (NOV) cell growth regulator: a new tool for molecular medicine. Expert Rev Mol Diagn, 2003. 3(5): p. 597-604.
25. Mercurio, S., et al., Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development, 2004. 131(9): p. 2137-47.
26. Segarini, P.R., et al., The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem, 2001. 276(44): p. 40659-67.
27. Zilberberg, A., A. Yaniv, and A. Gazit, The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem, 2004. 279(17): p. 17535-42.
28. Wahab, N.A., B.S. Weston, and R.M. Mason, Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol, 2005. 16(2): p. 340-51.
29. Wahab, N.A., B.S. Weston, and R.M. Mason, Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2. Exp Cell Res, 2005. 307(2): p. 305-14.
30. Abreu, J.G., et al., Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol, 2002. 4(8): p. 599-604.
31. Minamizato, T., et al., CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways. Biochem Biophys Res Commun, 2007. 354(2): p. 567-73.
32. Rydziel, S., et al., Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis and causes osteopenia. J Biol Chem, 2007. 282(27): p. 19762-72.
33. Ivkovic, S., et al., Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development, 2003. 130(12): p. 2779-91.
34. Hashimoto, G., et al., Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem, 2002. 277(39): p. 36288-95.
35. Yamamoto, Y., et al., Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament. Spine, 2002. 27(17): p. 1852-7.
36. Friedrichsen, S., et al., CTGF expression during mouse embryonic development. Cell Tissue Res, 2003. 312(2): p. 175-88.
37. Surveyor, G.A., A.K. Wilson, and D.R. Brigstock, Localization of connective tissue growth factor during the period of embryo implantation in the mouse. Biol Reprod, 1998. 59(5): p. 1207-13.
38. Slee, R.B., et al., Differentiation-dependent expression of connective tissue growth factor and lysyl oxidase messenger ribonucleic acids in rat granulosa cells. Endocrinology, 2001. 142(3): p. 1082-9.
39. Leask, A. and D.J. Abraham, The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol, 2003. 81(6): p. 355-63.
40. Igarashi, A., et al., Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell, 1993. 4(6): p. 637-45.
41. Shi-wen, X., et al., Autocrine overexpression of CTGF maintains fibrosis: RDA analysis of fibrosis genes in systemic sclerosis. Exp Cell Res, 2000. 259(1): p. 213-24.
42. Dziadzio, M., et al., N-terminal connective tissue growth factor is a marker of the fibrotic phenotype in scleroderma. QJM, 2005. 98(7): p. 485-92.
43. Chen, Y., et al., CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int, 2002. 62(4): p. 1149-59.
44. Leask, A., et al., Dysregulation of transforming growth factor beta signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum, 2002. 46(7): p. 1857-65.
45. Van Beek, J.P., et al., The induction of CCN2 by TGFbeta1 involves Ets-1. Arthritis Res Ther, 2006. 8(2): p. R36.
46. Holmes, A., et al., CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem, 2001. 276(14): p. 10594-601.
47. Xu, S.W., et al., Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem, 2004. 279(22): p. 23098-103.
48. Chen, Y., et al., Contribution of activin receptor-like kinase 5 (transforming growth factor beta receptor type I) signaling to the fibrotic phenotype of scleroderma fibroblasts. Arthritis Rheum, 2006. 54(4): p. 1309-16.
49. Stratton, R., et al., Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway. FASEB J, 2002. 16(14): p. 1949-51.
50. Abraham, D.J., et al., Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J Biol Chem, 2000. 275(20): p. 15220-5.
51. Chambers, R.C., et al., Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J Biol Chem, 2000. 275(45): p. 35584-91.
52. Murphy, M., et al., Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem, 1999. 274(9): p. 5830-4.
53. Finckenberg, P., et al., Angiotensin II induces connective tissue growth factor gene expression via calcineurin-dependent pathways. Am J Pathol, 2003. 163(1): p. 355-66.
54. Ball, D.K., et al., Establishment of a recombinant expression system for connective tissue growth factor (CTGF) that models CTGF processing in utero. Reproduction, 2003. 125(2): p. 271-84.
55. Ball, D.K., et al., The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion. J Endocrinol, 2003. 176(2): p. R1-7.
56. Babic, A.M., C.C. Chen, and L.F. Lau, Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol, 1999. 19(4): p. 2958-66.
57. Schober, J.M., et al., Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood, 2002. 99(12): p. 4457-65.
58. Chen, N., et al., Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem, 2004. 279(42): p. 44166-76.
59. Gao, R. and D.R. Brigstock, A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut, 2006. 55(6): p. 856-62.
60. Pi, L., et al., Connective tissue growth factor with a novel fibronectin binding site promotes cell adhesion and migration during rat oval cell activation. Hepatology, 2008. 47(3): p. 996-1004.
61. Leu, S.J., et al., Identification of a novel integrin alpha 6 beta 1 binding site in the angiogenic inducer CCN1 (CYR61). J Biol Chem, 2003. 278(36): p. 33801-8.
62. Nishida, T., et al., CCN2 (Connective Tissue Growth Factor) is essential for extracellular matrix production and integrin signaling in chondrocytes. J Cell Commun Signal, 2007. 1(1): p. 45-58.
63. Hoshijima, M., et al., CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin alpha5beta1. FEBS Lett, 2006. 580(5): p. 1376-82.
64. Nishida, T., et al., CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol, 2003. 196(2): p. 265-75.
65. Gao, R. and D.R. Brigstock, Low density lipoprotein receptor-related protein (LRP) is a heparin-dependent adhesion receptor for connective tissue growth factor (CTGF) in rat activated hepatic stellate cells. Hepatol Res, 2003. 27(3): p. 214-220.
66. Yang, D.H., et al., Identification of glycosylated 38-kDa connective tissue growth factor (IGFBP-related protein 2) and proteolytic fragments in human biological fluids, and up-regulation of IGFBP-rP2 expression by TGF-beta in Hs578T human breast cancer cells. J Clin Endocrinol Metab, 1998. 83(7): p. 2593-6.
67. Holt, G.D., M.K. Pangburn, and V. Ginsburg, Properdin binds to sulfatide [Gal(3-SO4)beta 1-1 Cer] and has a sequence homology with other proteins that bind sulfated glycoconjugates. J Biol Chem, 1990. 265(5): p. 2852-5.
68. Desnoyers, L., Structural basis and therapeutic implication of the interaction of CCN proteins with glycoconjugates. Curr Pharm Des, 2004. 10(31): p. 3913-28.
69. Brigstock, D.R., et al., Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem, 1997. 272(32): p. 20275-82.
70. Chen, Y.W., T.J. Fang, and H.Y. Li, A solitary laryngeal neurofibroma ina pediatric patient. Chang Gung Med J, 2004. 27(12): p. 930-3.
71. Murray-Rust, J., et al., Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure, 1993. 1(2): p. 153-9.
72. Yin, J., et al., [Preliminary application of PCR-DGGE to analyzing microbial diversity in biofilters treating air loaded with ammonia]. Huan Jing Ke Xue, 2004. 25(6): p. 11-5.
73. Crean, J.K., et al., The role of p42/44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production, cell migration, and actin cytoskeletal rearrangement in human mesangial cells. J Biol Chem, 2002. 277(46): p. 44187-94.
74. Zheng, J., et al., Clathrin-dependent endocytosis is required for TrkB-dependent Akt-mediated neuronal protection and dendritic growth. J Biol Chem, 2008. 283(19): p. 13280-8.
75. Shang, W.H., et al., Regulation of amphiphysin1 by mitogen-activated protein kinase: its significance in nerve growth factor receptor-mediated endocytosis. J Biol Chem, 2004. 279(39): p. 40890-6.
76. Valdez, G., et al., Trk-signaling endosomes are generated by Rac-dependent macroendocytosis. Proc Natl Acad Sci U S A, 2007. 104(30): p. 12270-5.
77. Fu, X., et al., Retrograde neurotrophic signaling requires a protein interacting with receptor tyrosine kinases via C2H2 zinc fingers. Mol Biol Cell, 2010. 21(1): p. 36-49.
78. Baggiolini, M., B. Dewald, and B. Moser, Human chemokines: an update. Annu Rev Immunol, 1997. 15: p. 675-705.
79. Rosenkilde, M.M. and T.W. Schwartz, The chemokine system -- a major regulator of angiogenesis in health and disease. APMIS, 2004. 112(7-8): p. 481-95.
80. Rot, A., et al., Some aspects of IL-8 pathophysiology. III: Chemokine interaction with endothelial cells. J Leukoc Biol, 1996. 59(1): p. 39-44.
81. Holmes, W.E., et al., Structure and functional expression of a human interleukin-8 receptor. Science, 1991. 253(5025): p. 1278-80.
82. Murphy, P.M. and H.L. Tiffany, Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science, 1991. 253(5025): p. 1280-3.
83. Chen, Y., et al., CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell, 2004. 15(12): p. 5635-46.
84. Perbal, B., [The CCN family of cell growth regulators: a new family of normal and pathologic cell growth and differentiation regulators: lessons from the first international workshop on CCN gene family]. Bull Cancer, 2001. 88(7): p. 645-9.
85. Rapraeger, A.C., A. Krufka, and B.B. Olwin, Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science, 1991. 252(5013): p. 1705-8.
86. Khan, A.G., et al., Human rhinovirus type 54 infection via heparan sulfate is less efficient and strictly dependent on low endosomal pH. J Virol, 2007. 81(9): p. 4625-32.
87. Perrone, L., et al., Functional interaction between p75NTR and TrkA: the endocytic trafficking of p75NTR is driven by TrkA and regulates TrkA-mediated signalling. Biochem J, 2005. 385(Pt 1): p. 233-41.
88. Shi, Y., et al., Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway. Sci Signal, 2009. 2(68): p. ra18.
89. Woronowicz, A., et al., Trypanosome trans-sialidase targets TrkA tyrosine kinase receptor and induces receptor internalization and activation. Glycobiology, 2004. 14(11): p. 987-98.
90. Boucher, P. and M. Gotthardt, LRP and PDGF signaling: a pathway to atherosclerosis. Trends Cardiovasc Med, 2004. 14(2): p. 55-60.
91. Herz, J. and D.K. Strickland, LRP: a multifunctional scavenger and signaling receptor. J Clin Invest, 2001. 108(6): p. 779-84.
92. Lillis, A.P., et al., LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev, 2008. 88(3): p. 887-918.
93. Takayama, Y. and T. Takezawa, Lactoferrin promotes collagen gel contractile activity of fibroblasts mediated by lipoprotein receptors. Biochem Cell Biol, 2006. 84(3): p. 268-74.
94. Ascano, M., et al., Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J Neurosci, 2009. 29(37): p. 11674-85.
95. Shao, Y., et al., Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J Cell Biol, 2002. 157(4): p. 679-91.
96. Valdez, G., et al., Pincher-mediated macroendocytosis underlies retrograde signaling by neurotrophin receptors. J Neurosci, 2005. 25(21): p. 5236-47.
97. Li, C., et al., Nerve growth factor activation of the TrkA receptor induces cell death, by macropinocytosis, in medulloblastoma Daoy cells. J Neurochem, 2010. 112(4): p. 882-99.
98. Sutherland, M.D. and T.R. Kozel, Macrophage uptake, intracellular localization, and degradation of poly-gamma-D-glutamic acid, the capsular antigen of Bacillus anthracis. Infect Immun, 2009. 77(1): p. 532-8.
99. Martin-Orozco, N., A. Isibasi, and V. Ortiz-Navarrete, Macrophages present exogenous antigens by class I major histocompatibility complex molecules via a secretory pathway as a consequence of interferon-gamma activation. Immunology, 2001. 103(1): p. 41-8.
100. Brat, D.J., A.C. Bellail, and E.G. Van Meir, The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol, 2005. 7(2): p. 122-33.
101. Theoleyre, S., et al., Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: role in the interactions with receptor activator of nuclear factor kappaB ligand (RANKL) and RANK. Biochem Biophys Res Commun, 2006. 347(2): p. 460-7.
102. Vogt, A.M., et al., Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathog, 2006. 2(9): p. e100.
103. Gao, R. and D.R. Brigstock, Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem, 2004. 279(10): p. 8848-55.
104. Gaultier, A., et al., Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. Blood, 2008. 111(11): p. 5316-25. |
顯示於類別: | [醫學科學研究所] 博碩士論文
|
在TMUIR中所有的資料項目都受到原著作權保護.
|