資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/36287
|
題名: | 赤蘚紅對細菌及酵母菌之光動力效應探討 |
作者: | 曾鈺涵 |
貢獻者: | 生醫材料暨工程研究所 |
日期: | 2010 |
上傳時間: | 2010-10-20 11:24:00 (UTC+8) |
摘要: | 光動力療法乃是結合光感物質及適當波長之光源,經由電子或能量轉移產生能進行無特異性目標攻擊之活性氧類 (reactive oxygen species),以破壞腫瘤及病原體。為尋求解決日漸嚴重的抗藥性問題,使得光動力殺菌逐漸成為替代性治療微生物的方式。赤蘚紅 (Erythrosine),為臨床牙科使用的牙菌斑顯示劑,具有低毒性、易結合至菌體之特性,並且已有文獻指出赤蘚紅對於革蘭氏陽性菌之(Streptococcus mutans) 具有良好之光動力殺菌能力。在本實驗中,藉由赤蘚紅對轉糖鏈球菌具有光動力殺菌效果,探討作用於其他種革蘭氏陽性菌、革蘭氏陰性菌及酵母菌類之光動力殺菌的能力。實驗中針對革蘭氏陽性菌(金黃葡萄球菌、轉糖鏈球菌)、革蘭氏陰性菌(綠膿桿菌、大腸桿菌)及酵母菌(白色念珠菌)代表性菌株進行懸浮菌體及生物膜之光動力殺菌探討。
實驗結果顯示當赤蘚紅濃度為 20 mM 以下,不照光的情況,對於革蘭氏陽性菌、革蘭氏陰性菌及酵母菌的菌數影響不大,顯示赤蘚紅本身對菌體並不會造成傷害。首先探討懸浮菌體部分,在照光強度為50 J/cm2 下,赤蘚紅的濃度為 0.05 mM 時,皆可將革蘭氏陽性菌全部撲殺;而對於白色念珠菌則需將濃度提高至4 mM,才可同樣可達到消滅全部菌體;革蘭氏陰性菌之效果則不顯著,但在0.1%醋酸環境下,可促進光動力殺菌效果。生物膜部份,白色念珠菌生物膜對光動力耐受性較強,即使作用 20 mM 赤蘚紅、光照劑量提高至100 J/cm2,仍無明顯殺菌效果;金黃葡萄球菌及轉糖鏈球菌生物膜對光動力較具感受性,光照 50 J/cm2 下,分別作用0.05 mM 赤蘚紅皆可達到全殺狀態。此研究顯示赤蘚紅對革蘭氏陽性菌懸浮菌體及生物膜有良好之光動力殺菌效果,在未來的應用上極具潛力。
Photodynamic therapy (PDT) combines the photosensitizers (PSs) and visible light to produce a phototoxic response that results in oxidative damages to a variety of targets including nucleic acids, proteins, and lipids. In recent years, the growing resistance to antibiotics among pathogenic bacteria rendered antimicrobial photodynamic inactivation (PDI) as an alternative anti-infection treatment modality. Erythrosine, a clinical plaque disclosing agent, has been reported to have PDI efficacy against Streptococcus mutans. In this study, we investigated the effect of PDI on the viability of gram-positive (Staphylococcus aereus and Streptococcus mutans), gram-negative (Pseudomonas aeruginosa and Escherichia coli) and yeast (Candida albicans) planktonic cells and biofilm using erythrosine as the photosensitizer.
The results in this study show that 20 mM of erythrosine has no dark toxicity to the gram-positive, gram-negative and yeast. For planktonic cells treated with PDI, using 0.05 mM of erythrosine and irradiation light dose of 50 J/cm2, no viable cells of Gram-positive were detected. When concentration of erythrosine was raised to 4 mM, no viable cells of Candida albicans were detected. However, the gram-negative bacteria not effective to the treatment. However, 0.1% acetic acid evironment could enhance the PDI against gram-negative bacteria. For biofilm treated with PDI, Candida albicans biofilm shows high tolerance to PDI treatment and was no effective to the treatment, even at 20 mM of erythrosine and 100 J/cm2. Gram-positive (Staphylococcus aereus and Streptococcus mutans) biofilm were more sensitive to PDI treatment, and increase the dose of erythrosine to 0.05 mM and the light dose to 50 J/cm2 could result in complete eradication of the bacteria. This study showed that erythrosine was a potential photosensitizer for PDI against gram-positive bacteria and yeast. |
關聯: | 58頁 |
描述: | 謝誌 i
中文摘要 ii
Abstract iii
圖表目錄 vii
第一章、緒論 1
1-1 微生物的感染防治 1
1-1.1 常見的微生物感染 2
1-1.2造成感染的細菌簡介以及所引起的疾病 3
1-1.3 抗生素治療 6
1-1.4 微生物的抗藥性機制 7
1-2 生物膜 8
1-2.1 生物膜的定義 8
1-2.2 生物膜的形成 8
1-2.3 生物膜的抗藥性機制 9
1-3 光動力作用 11
1-3.1 光動力作用之歷史及應用 11
1-3.2 作用原理與機制 12
1-4 赤蘚紅介紹 14
1-4.1 赤蘚紅的結構與特性 14
1-4.2 赤蘚紅的應用 14
1-4.3 赤蘚紅於光動力殺菌應用上之優勢 15
第二章、實驗動機與目的 16
第三章、材料與方法 17
3-1菌種來源與保存 17
3-2 材料 18
3-3 儀器 19
3-4 實驗方法 20
3-4.1懸浮菌體培養 20
3-4.2 赤蘚紅對懸浮菌體之光動力抑制 21
3-4.3 生物膜培養 21
3-4.4 赤蘚紅對生物膜之光動力抑制 22
3-4.5 赤蘚紅母液之配製 22
3-5 統計分析 22
第四章、結果與討論 23
4-1 光感物質與光動力實驗 23
4-1.1 赤蘚紅於磷酸緩衝液中之穩定性 23
4-1.2 赤蘚紅與菌體作用分析 23
4-2 赤蘚紅對懸浮菌體之光動力殺菌作用 24
4-2.1 革蘭氏陽性菌 24
4-2.2 革蘭氏陰性菌 26
4-2.3 酵母菌 29
4-3 赤蘚紅對生物膜之之光動力殺菌效果 30
4-3.1 生物膜之培養與定量 30
4-3.2 赤蘚紅光動力作用對生物膜之殺菌效果 31
第五章、結論 34
第六章、未來研究方針 35
第七章、附圖表 36
第八章、參考文獻 53
1. Nester, E.W. et al., Microbiology: A Human Perspective, 4th ed, WCB McGraw-Hill Publishers, Boston, MA, 2004.
2. Ronald Hare, The scientific activities of Alexander Fleming, other than the discovery of penicillin. Medical History, 27: 347-372 (1983) .
3. J. W. Costerton, et al. Bacterial Biofilms: A Common Cause of Persistent infection. Science 284, 1318-1322 (1999).
4. P Quatresooz, C Pierard-Franchimont, JE Arrese, GE Pierard, Clinicopathologic presentations of dermatomycoses in cancer patients. Journal of the European Academy of Dermatology and Venereology 22, 907–917(2008)
5. Egberto Munin, Ligia Maria Giroldo, Leandro Proco´pio Alves, Maricilia Silva Costa. Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). Journal of Photochemistry and Photobiology B: Biology 88, 16–20 (2007).
6. 陳怡君.院內感染念珠菌的臨床及分子流行病學研究,衛生署研究計畫報告書(DOH-86-TD-044).
7. Hamada, S. and Slade, H.D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological Reviews 44, 331-384 (1980).
8. Lodge, J. and Jacobson, G.R. Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Infection and Immunity 56, 2594-2600 (1988).
9. Horaud, T. and Delbos, F. Viridans streptococci in infective endocarditis: Species distribution and susceptibility to antibiotics. European Heart Journal 5, 39-44 (1984).
10. Gerald P. Bodey, Ricardo Bolivar, Victor Fainstein, Leena Jadeja. Infections Caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases 5, 279-313 (1983).
11. Clement Mugabe, Majed Halwani, Ali O. Azghani, Robert M. Lafrenie, and Abdelwahab Omri. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 50, 2016–2022 (2006).
12. Lisa Saiman. Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for’. Paediatric Respiratory Reviews 8, 249-255 (2007).
13. Marisa I Gómez and Alice Prince. Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Current Opinion in Pharmacology 7, 244-251 (2007).
14. Cynthia Ryder, Matthew Byrd and Daniel J Wozniak. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Current Opinion in Microbiology 10, 644-648 (2007).
15. Bergey, D.H., David Hendricks, Krieg, MoeIR., Holt, John G. Bergey’s manual of systematic bacteriology. Williams & Wilkins (1984).
16. Luke F. Chen, Teena Chopa, Keith S Kaye. Pathogens resistant to antibacterial agents. Infectious Disease Clinics of North America 23, 817-845 (2009).
17. Fred C. Tenover, Atlanta, Georgia. Mechanisms of antimicrobial resistance in bacteria. American Journal of Infection Control 34, 3-10 (2006).
18. Evans, M.E., Feola, D. J. and Rapp, R. P. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. The Annals of pharmacotherapy. 33, 960-967 (1999).
19. Zavascki, A.P., Goldani, L. Z., Li, J. and Nation, R. L. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. The Journal of antimicrobial chemotherapy. 60, 1206-1215 (2007).
20. Clissold, S.P., Todd, P. A. and Campoli-Richards, D. M. Imipenem/cilastatin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 33, 183-241 (1987).
21. Schroeder, R., Waldsich, C. and Wank, H. Modulation of RNA function by aminoglycoside antibiotics. The EMBO journal. 19, 1-9 (2000).
22. Drlica, K. and Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews. 61, 377-392 (1997).
23. McManus MC. Mechanisms of bacterial resistance to antimicrobial agents. American Journal of Health-System Pharmacy. 54, 420-33 (1997).
24. P. Stoodley, K. Sauer, D. G. Davies, J. W. Costerton. Biofilms as complex differentiated communities. Annual Review of Microbiology 56, 187-209 (2002).
25. Brown M. R. and P. Gilbert. Sensitivity of biofilms to antimicrobial agents. Journal of Applied Bacteriology. 74, Suppl: 87S-97S (1993).
26. Parsek M. R. and C. Fuqua. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. Journal of Bacteriology. 186, 4427-4440. (2004).
27. Philip S Stewart, J William Costerton. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135-138. (2001).
28. Elasri M. O. and R. V. Miller. Study of the response of a biofilm bacterial community to UV radiation. Applied and Environmental Microbiology. 65, 2025-2031 (1999).
29. Lewis K. Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy. 45, 999-1007 (2001).
30. Spoering A. L. and K. Lewis. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of Bacteriology.183, 6746-6751 (2001).
31. Tack K. J. and L. D. Sabath. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy. 31, 204-210 (1985).
32. Zhang T. C. and P. L. Bishop. Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environment Research. 68, 1107-1115 (1996).
33. Prigent-Combaret C., O. Vidal, C. Dorel, and P. Lejeune. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. Journal of Bacteriology. 181, 5993-6002 (1999).
34. Shih P. C. and C. T. Huang. Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. The Journal of Antimicrobial Chemotherapy. 49, 309-314 (2002).
35. Allison D. G and P. Gilbert. Modification by surface association of antimicrobial susceptibility of bacterial populations. Journal of Industrial Microbiology. 15, 311-317 (1995).
36. Hassett D. J., J. F. Ma, J. G. Elkins, et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Journal of Molecular Microbiology. 34, 1082-1093 (1999).
37. Ackroyd R., C. Kelty, N. Brown, and M. Reed. The history of photodetection and photodynamic therapy. Journal of Photochemistry and Photobiology. 74, 656-69 (2001).
38. Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). Journal of.Antimicrobial and Chemotherapy. 42, 13-28 (1998).
39. Wainwright M. The emerging chemistry of blood product disinfection. Chemical Society Review. 31, 128-136 (2002).
40. Santus R., P. Grellier, J. Schrevel, J. C. Maziere, and J. F. Stoltz. Photodecontamination of blood components: advantages and drawbacks. Clinical Hemorheology and Microcirculation. 18, 299-308 (1998).
41. Soukos N. S., S. E. Mulholland, S. S. Socransky, and A. G. Doukas. Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers in Surgery and Medicine. 33, 161-168 (2003).
42. Soukos N. S., L. A. Ximenez-Fyvie, M. R. Hamblin, S. S. Socransky, and T. Hasan. Targeted antimicrobial photochemotherapy. Antimicrobial Agent Chemotherapy. 42, 2595-2601 (1998).
43. Ashkenazi H., Z. Malik., Y. Harth, and Y. Nitzan. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunology and Medical Microbiology. 35, 17-24. (2003).
44. Cho M., H. Chung, W. Choi, and J. Yoon. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research. 38, 1069-1077 (2004).
45. Sunada K., T. Watanabe, and K. Hashimoto. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environmental Science & Technology. 37, 4785-4789 (2003).
46. Hsi, R.A., Rosenthal, D.I. and Glatstein, E. Photodynamic Therapy in the Treatment of Cancer: Current State of the Art. Drugs. 57, 725-734 (1999).
47. Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). Journal of Antimicrobial and Chemotherapy. 42, 13-28 (1998).
48. Maisch, T. Antimicrobial photodynamic therapy: useful in the future? Lasers In Medical Science. 22, 83-91 (2007).
49. Sharman, W.M., Allen, C.M. and Lier, J.E. Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today. 4, 507-517 (1999).
50. Ackroyd R., C. Kelty, N. Brown, and M. Reed. The history of photodetection and photodynamic therapy. Photochemistry and Photobiology. 74, 656-669 (2001).
51. Bonnett R. Chemical aspects of photodynamic therapy. Gordon and Breach Science Publishers. (2000).
52. Stapleton M. and L. E. Rhodes. Photosensitizers for photodynamic therapy of cutaneous disease. Journal of Dermatological Treatment. 14, 107-112 (2003).
53. Dongen G. A., G.W. Visser., and M. B. Vrouenraets. Photosensitizer-antibody conjugates for detection and therapy of cancer. Advanced Drug Delivery Reviews. 56, 31-52 (2004).
54. E. Montero, M.A. Garcia, M.A. Villegas and J. Llopis. Spectral pH dependence of erythrosin B in sol-gel silica coatings and buffered solutions. Boletin de la Sociedad Española de Cerámica y Vidrio. 47, 1-6 (2008).
55. M. Gomberg and D. L. Tabern, Journal of Industrial and Engineering Chemistry. 14, 1115 (1922).
56. D. Vasudevan, P. N. Anantharaman. Electrochemical synthesis of erythrosin from fluorescein. Journal of Applied Electrochemistry. 24, 1188-1190 (1994).
57. German Patent 108 838 (1899).
58. Food Standards, Australia, New Zealand, 2008.
59. Gong Yun, Fu Xiang-kai, Xie Bing. Preparation of several forms of plaque indicators. Journal of Southwest China Normal University (Natural Science) 27, 918-921 (2002).
60. Simon Wood, Daniel Metcalf, Deirdre Devine and Colin Robinson. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. Journal of Antimicrobial and Chemotherapy 57, 680–684 (2006).
61. B.zeina, J.Greenman, W.M.Purcell and B.Das. Killing of cutaneous microbial species by photodynamic therapy. British Journal of Dermatology. 144, 274-278 (2001).
62. Tony P. Paulino, Karina F. Ribeiro, Geraldo Thedei Jr.,Antoˆnio C. Tedesco, Pietro Ciancaglini. Use of hand held photopolymerizer to photoinactivate Streptococcus mutans. Archives of Oral Biology. 50, 353-359 (2005).
63. Kohen, R. and Nyska, A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology. 30, 620-650 (2002).
64. Hamblin, M.R. and Hasan, T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical and photobiological sciences. 3, 436-450 (2004).
65. B. Pitts, A. Willse, G.A. McFeters, M.A. Hamilton, N. Zelver and P.S. Stewart. A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. Journal of Applied Microbiology. 91, 110-117 (2001).
66. Hsiao-Yin Lin, Chin-Tin Chen, and Ching-Tsan Huang. Use of Merocyanine 540 for Photodynamic Inactivation of Staphylococcus aureus Planktonic and Biofilm Cells. Applied and Environmental Microbiology. 70, 6453–6458 (2004).
67. Chia-Fen Lee , Chi-Jui Lee , Chin-Tin Chen , Ching-Tsan Huang. d-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures. Journal of Photochemistry and Photobiology B: Biology. 75, 21–25 (2004).
68. Mariusz Grinholc, Bozena Szramka, Katarzyna Olender and Alfreda Graczyk. Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers. Journal of Acta Biochimica Polonica. 54, 665–670 (2007).
69. Lilian s peloi, Rafael R.S Soares, Carlos E G Biondo, Vagner R Souza,Noboru Hioka and Elza Kimura. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. Journal of Bioscience. 33, 231–237 (2008).
70. Tatiana N. Demidova and Michael R. Hamblin. Effect of Cell-Photosensitizer Binding and Cell Density on Microbial Photoinactivation. Antimicrobial Agents and Chemotherapy. 49, 2329–2335 (2005).
71. I.M. Bevilacqua, R.A. Nicolau, S. Khourl, A. Brugnera, G.R. Teodoro, R.A. Zangaro and M.T.T. Pacheco. The Impact of Photodynamic Therapy on the Viability of Streptococcus mutans in a Planktonic Culture. Photomedicine and Laser Surgery 25, 513–518 (2007).
72. Padula M. and S. Boiteux. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae. Brazilian Journal of Medical and Biological Research. 32, 1063-1071 (1999).
73. Annette Klein PB, Sigrid Karrer, Michael Landthaler, Rolf-Markus Szeimies. Photodynamic therapy in dermatology. Journal of the German Society of Dermatology. 6, 839-46 (2008).
74. H. Ryssel, O. Kloeters, G. Germann, Th. Schafer, G. Wiedemann, M. Oehlbauer. The antimicrobial effect of acetic acid—an alternative to common local antiseptics? Burns. 35, 695-700 (2009). |
顯示於類別: | [生醫材料暨組織工程研究所] 博碩士論文
|
文件中的檔案:
檔案 |
大小 | 格式 | 瀏覽次數 |
tmu-99-M225097012-1.pdf | 1528Kb | Adobe PDF | 703 | 檢視/開啟 |
|
在TMUIR中所有的資料項目都受到原著作權保護.
|