資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/36280
|
題名: | 年齡對脂肪幹細胞之骨誘導分化影響 |
作者: | 曾富宏 |
貢獻者: | 生醫材料暨工程研究所 |
日期: | 2010 |
上傳時間: | 2010-10-20 11:14:26 (UTC+8) |
摘要: | 本研究目的,是探討年齡對脂肪間葉幹細胞(adipose-derive stem cells, ADSCs)之骨生成作用影響。基於先前實驗室建立之血小板濃厚液(platelet rich plasma)促使骨前驅細胞其增生及骨分化能力,再移植至去卵巢早老化老鼠(OVX-SAMP8)中,進行骨質疏鬆之預防與治療研究,此結果已發表至Journal of Nuclear Medicine國際期刊上。故本實驗,鑒於先前建立細胞移植模式外,將深入探討不同年齡ADSC於體外及骨鬆老鼠內之骨誘導分化影響。首先第一部分體外實驗,於早老化老鼠腹腔中,分別取得年輕族群(1月齡)與老年族群(10月齡)之脂肪幹細胞進行體外定性實驗,並試驗出最適生長環境,以利維持不同年齡之幹細胞活性,實驗結果證實年輕族群之脂肪幹細胞其增生速率(proliferation rate)、自我複製(self-renewal)能力及細胞骨誘導分化表現,皆優於老年族群之脂肪幹細胞。第二部分動物實驗,將延續體外試驗,進而應用於骨鬆動物中,探討不同年齡的脂肪幹細胞來源於體內環境中,是否影響其骨生成作用。骨質密度結果發現,此治療模式可修復骨質流失現象並優於老年族群脂肪幹細胞之骨修復能力。該兩大部分實驗之建立,有助於現今細胞治療中,提供不同年齡幹細胞給予受試者之臨床前發展。
The aim of this thesis is to study the effects of aging on the ability of bone formation in ADSCs. Previously, we have established a novel therapeutic approach based on transplantation with progenitor cells (NIH3T3), in order to prevent osteoporosis and prolong the lifespan of the ovariectomized-senescence-accelerated mice (OVX-SAMP8). We decided to further our previous study by determining the aging effect on osteogenic differentiation potential of ADSCs. ADSCs were isolated from adipose tissues which obtained from female SAMP8 mice with different ages for in vitro study. First, we used flow cytometry to characterize the isolated cells by examining the expression of surface markers such as CD45, CD34, Sca-1, CD44 and CD105. Second, we compared the aging effects on the growth kinetics and differentiation potential of ADSCs between young (one month old) and old (ten month old) from female SAMP8 mice, and found there was a significant difference in both the proliferation rate and osteo-differentiation potential. Differentiated ADSCs were transplanted into the bone marrow in osteoporotic mice (OVX-SAMP8). Therefore, transplantion of differentiated ADSC cells was shown effective in restoring bone mineral density from the right/left knees and femurs at 3 months and the differentiated young group (ADSC-1M) showed significantly higher bone regeneration in OVX-SAMP8 mice, comparing to the differentiated old group (ADSC-10M). In conclusion, these findings provided important insights on emerging cell-based therapeutic strategies, especially in the treatment of various bone disorders including osteoporosis. |
關聯: | 49頁 |
描述: | 致謝 I
中文摘要 II
英文摘要 III
第一章 緒論 1
第二章 理論基礎 7
2.1 脂肪幹細胞 7
2.2 骨骼重朔作用 8
2.3 骨質疏鬆症 9
2.4 骨質疏鬆症動物模式建立 10
2.5 雙能譜骨質密度儀 10
第三章 材料與方法 12
3.1 實驗材料 12
3.1.1 藥品與試劑: 12
3.1.2 主要儀器: 13
3.1.3 細胞與動物: 13
3.2 實驗方法 14
3.2.1 骨質疏鬆症動物模式之建立 14
3.2.1.1 實驗動物 14
3.2.1.2 早老化雌性鼠的卵巢切除手術(Ovariectomy,OVX) 14
3.2.2 體外試驗(in vitro): 比較ADSC-1M和ADSC-10M的骨誘導分化 影響 15
3.2.2.1 脂肪幹細胞的取得與培養 15
3.2.2.2 流式細胞技術 16
3.2.2.3 細胞染色法 (cytochemistry assay) 16
3.2.2.4 配置誘導分化的培養基 17
3.2.2.5 mRNA萃取(total mRNA extration) 17
3.2.2.6 反轉錄作用(reverse transcription, RT) 18
3.2.2.7 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 18
3.2.2.8 洋菜膠配法(Agarose gel preparation) 19
3.2.2.9 去卵巢早老化小鼠(SAMP8-OVX)的鑽骨手術 19
3.2.3 功能性評估(function index) 19
3.2.3.1 骨礦物質密度測定(bone mineral density, BMD) 19
第四章 結果 21
4.1 實驗設計: 22
4.2 利用早老化老鼠(SAMP8)建立脂肪幹細胞(ADSC)之分離、培養 22
4.3 從分離的貼附細胞中分析脂肪幹細胞(ADSC)的表面抗原 23
4.4 探討分離細胞的分化能力 23
4.5 在活體外環境下培養不同年齡取得的脂肪幹細胞比較老化上的差異 24
4.6 比較兩組幹細胞年輕(younger donor)及老年(order donor)的增生速率 24
4.7 比較兩組幹細胞年輕(younger donor)及老年(order donor) 幹細胞的自我更新複製的能力 25
4.8 在體外環境下利用基因表現探討年齡影響幹細胞的骨分化能力 25
4.9 在體外環境下利用Alizarin red染色表現探討年齡影響幹細胞的骨分化能力 26
4.10 在體內環境下(in vivo)利用BMD探討年齡影響脂肪幹細胞的骨誘導分化 26
第五章 討論 27
第六章 結論 32
第七章 參考文獻 33
1. Goldschlager, T., et al. Cervical motion preservation using mesenchymal progenitor cells and pentosan polysulfate, a novel chondrogenic agent: preliminary study in an ovine model. Neurosurg Focus 28, E4 (2010).
2. Zscharnack, M., et al. Repair of Chronic Osteochondral Defects Using Predifferentiated Mesenchymal Stem Cells in an Ovine Model. Am J Sports Med (2010).
3. Nedopil, A.J., Mandrussow, L.G. & Daldrup-Link, H.E. Implantation of ferumoxides labeled human mesenchymal stem cells in cartilage defects. J Vis Exp (2010).
4. Alm, J.J., et al. Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients. J Orthop Res (2010).
5. Chanda, D., Kumar, S. & Ponnazhagan, S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. J Cell Biochem (2010).
6. Weaver, A.S., et al. The effects of axial displacement on fracture callus morphology and MSC homing depend on the timing of application. Bone 47, 41-48 (2010).
7. Shoji, T., et al. Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Lab Invest 90, 637-649 (2010).
8. Calori, G.M., Donati, D., Di Bella, C. & Tagliabue, L. Bone morphogenetic proteins and tissue engineering: future directions. Injury 40 Suppl 3, S67-76 (2009).
9. Hendrickx, B., et al. Integration of Blood Outgrowth Endothelial Cells in Dermal Fibroblast Sheets Promotes Full Thickness Wound Healing. Stem Cells (2010).
10. Cohen, S., et al. Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues. Tissue Eng Part A (2010).
11. Singla, D.K. Stem cells in the infarcted heart. J Cardiovasc Transl Res 3, 73-78 (2010).
12. Fuh, E. & Brinton, T.J. Bone marrow stem cells for the treatment of ischemic heart disease: a clinical trial review. J Cardiovasc Transl Res 2, 202-218 (2009).
13. Nguyen, B.K., et al. Improved Function and Myocardial Repair of Infarcted Heart by Intracoronary Injection of Mesenchymal Stem Cell-Derived Growth Factors. J Cardiovasc Transl Res (2010).
14. Cook, M.M., Kollar, K., Brooke, G.P. & Atkinson, K. Cellular therapy for repair of cardiac damage after acute myocardial infarction. Int J Cell Biol 2009, 906507 (2009).
15. Kawakami, A. Stem cell system in tissue regeneration in fish. Dev Growth Differ 52, 77-87 (2010).
16. Enver, T., Pera, M., Peterson, C. & Andrews, P.W. Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4, 387-397 (2009).
17. Rozen, N., Lewinson, D., Bick, T., Meretyk, S. & Soudry, M. Role of bone regeneration and turnover modulators in control of fracture. Crit Rev Eukaryot Gene Expr 17, 197-213 (2007).
18. Vaananen, H.K. Mesenchymal stem cells. Ann Med 37, 469-479 (2005).
19. Thomson, J.A., et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 (1998).
20. Chen, H.F., et al. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod 22, 567-577 (2007).
21. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18, 399-404 (2000).
22. Lerou, P.H. & Daley, G.Q. Therapeutic potential of embryonic stem cells. Blood Rev 19, 321-331 (2005).
23. Jacobson, L.O., Marks, E.K. & Gaston, E.O. [Effect of protection of the spleen during total body irradiation on the blood in rabbit.]. Rev Hematol 8, 515-532 (1953).
24. Lorenz, E., Uphoff, D., Reid, T.R. & Shelton, E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 12, 197-201 (1951).
25. Herzog, E.L., Chai, L. & Krause, D.S. Plasticity of marrow-derived stem cells. Blood 102, 3483-3493 (2003).
26. Caplan, A.I. Mesenchymal stem cells. J Orthop Res 9, 641-650 (1991).
27. Minguell, J.J., Erices, A. & Conget, P. Mesenchymal stem cells. Exp Biol Med (Maywood) 226, 507-520 (2001).
28. Pereira Lda, V. [The importance of the use of stem cells for public health]. Cien Saude Colet 13, 7-14 (2008).
29. Wagner, W., et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3, e2213 (2008).
30. Zhou, S., et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7, 335-343 (2008).
31. Laharrague, P. & Casteilla, L. The Emergence of Adipocytes. Endocr Dev 19, 21-30 (2010).
32. Hausman, G.J. Techniques for studying adipocytes. Stain Technol 56, 149-154 (1981).
33. Young, H.E., et al. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 202, 137-144 (1995).
34. Zuk, P.A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211-228 (2001).
35. British Society for Matrix Biology meeting, Manchester, 2-3 April 2001. Abstracts. Int J Exp Pathol 82, A1-25 (2001).
36. Rider, D.A., et al. Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells 26, 1598-1608 (2008).
37. Shi, Y.Y., Nacamuli, R.P., Salim, A. & Longaker, M.T. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 116, 1686-1696 (2005).
38. Zhu, M., et al. The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J Tissue Eng Regen Med 3, 290-301 (2009).
39. Takeda, T., et al. A novel murine model of aging, Senescence-Accelerated Mouse (SAM). Arch Gerontol Geriatr 19, 185-192 (1994).
40. Pittenger, M.F., et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 (1999).
41. Cheng, S.L., Yang, J.W., Rifas, L., Zhang, S.F. & Avioli, L.V. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134, 277-286 (1994).
42. Kimoto, S., Cheng, S.L., Zhang, S.F. & Avioli, L.V. The effect of glucocorticoid on the synthesis of biglycan and decorin in human osteoblasts and bone marrow stromal cells. Endocrinology 135, 2423-2431 (1994).
43. Kadiyala, S., Young, R.G., Thiede, M.A. & Bruder, S.P. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6, 125-134 (1997).
44. Lo, W.C., et al. Transplantation of embryonic fibroblasts treated with platelet-rich plasma induces osteogenesis in SAMP8 mice monitored by molecular imaging. J Nucl Med 50, 765-773 (2009).
45. Bianco, P. & Gehron Robey, P. Marrow stromal stem cells. J Clin Invest 105, 1663-1668 (2000).
46. Khosla, S., Westendorf, J.J. & Oursler, M.J. Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118, 421-428 (2008).
47. Sambrook, P.N. Osteoporosis. Med J Aust 165, 332-336 (1996).
48. Close, P., Neuprez, A. & Reginster, J.Y. Developments in the pharmacotherapeutic management of osteoporosis. Expert Opin Pharmacother 7, 1603-1615 (2006).
49. Rizzoli, R. Long-term outcome of weekly bisphosphonates. Clin Orthop Relat Res 443, 61-65 (2006).
50. Tang, Y., et al. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int 32, 1150-1157 (2008).
51. Takeda, T., Hosokawa, M. & Higuchi, K. Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 39, 911-919 (1991).
52. Takeda, T., Hosokawa, M. & Higuchi, K. Senescence-accelerated mouse (SAM): a novel murine model of senescence. Exp Gerontol 32, 105-109 (1997).
53. Maddox, J.R., Liao, X., Li, F. & Niyibizi, C. Effects of Culturing on the Stability of the Putative Murine Adipose Derived Stem Cells Markers. Open Stem Cell J 1, 54-61 (2009).
54. Ferber, A., et al. Failure of senescent human fibroblasts to express the insulin-like growth factor-1 gene. J Biol Chem 268, 17883-17888 (1993).
55. Carlin, C., Phillips, P.D., Brooks-Frederich, K., Knowles, B.B. & Cristofalo, V.J. Cleavage of the epidermal growth factor receptor by a membrane-bound leupeptin-sensitive protease active in nonionic detergent lysates of senescent but not young human diploid fibroblasts. J Cell Physiol 160, 427-434 (1994).
56. Seshadri, T. & Campisi, J. Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247, 205-209 (1990).
57. Dimri, G.P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367 (1995).
58. Kassem, M., Ankersen, L., Eriksen, E.F., Clark, B.F. & Rattan, S.I. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7, 514-524 (1997).
59. Fehrer, C. & Lepperdinger, G. Mesenchymal stem cell aging. Exp Gerontol 40, 926-930 (2005).
60. Sethe, S., Scutt, A. & Stolzing, A. Aging of mesenchymal stem cells. Ageing Res Rev 5, 91-116 (2006).
61. Zheng, B., Cao, B., Li, G. & Huard, J. Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng 12, 1891-1901 (2006).
62. Kassem, M. Stem cells: potential therapy for age-related diseases. Ann N Y Acad Sci 1067, 436-442 (2006).
63. Stenderup, K., Justesen, J., Clausen, C. & Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33, 919-926 (2003). |
顯示於類別: | [生醫材料暨組織工程研究所] 博碩士論文
|
在TMUIR中所有的資料項目都受到原著作權保護.
|