English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2517679      線上人數 : 210
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/34198


    題名: 以心臟超音波為基礎使用類神經網路來預測心臟衰竭的住院機會
    作者: 楊弘宇
    貢獻者: 醫學資訊研究所
    日期: 2010
    上傳時間: 2010-09-09 11:25:16 (UTC+8)
    摘要: 心臟衰竭是65歲以上的老人住院的主要原因之一,如果沒有好好控制,心臟衰及擁有相當高的死亡率,在診斷後的第一年,約有六分之一到五分之一會死亡,五年後平均有一半會死亡。但若治療後死亡率則降低很多,而且可以改善生活品質。在美國有將近500萬的人口有心臟衰竭,占了65歲以上人口約1%,而且每年以近50 萬人的數目增加,同時心臟衰竭也占了所有65歲以上人口住院原因的20%,在台灣40 歲以上的人口,每年有6%出現心臟衰竭 (Congestive Heart Failure) 症狀,總共約有50 萬病患。都普勒心臟超音波是一個最常用來評估心臟功能的方法,它可以讓我們了解到心臟的功能是否正常或是已經受損了。這個研究的主要目的是以心臟超音波的參數為基礎,使用類神經網路以及邏輯迴歸(Logistic Regression)的方式,來預測病人是否會因為心臟衰竭而住院,從2008年1月到2008年12月總共有7473個病人被納入這個試驗做為訓練組,另一組以2009年1月到12月當作是試驗組,總共有8124個病人,有15個心臟超音波的變數及兩個臨床變數被納入做為分析的參數,我們使用人工類神經網路(Artificial Neural Networks)的方式以及邏輯迴歸(Logistic Regression)的方式來加以分析判斷。最佳的類神經網路架構是前向式學習,倒傳類神經網路多層感知器是最好的架構,在預測病人是否會因心臟衰竭而住院方面,類神經網路的正確率是97.2%優於邏輯迴歸的96.6%,而以ROC 曲線下的面積大小來看,類神經網路是0.910±0.009優於邏輯迴歸的0.895±0.011,而p值 = 0.008是有意義的,所以我們認為用來預測病人是否會因心臟衰竭而住院方面,類神經網路顯然是一個比邏輯迴歸分析還要好的預測模式

    Congestive heart failure (CHF) is one of the major causes of hospitalization in population older than 65 years. Doppler echocardiography is one of the objective method to evaluate cardiac function. These evaluations let us know whether heart function is normal or impaired. The aim of this study was to design an artificial neural network (ANN) model capable of predicting the exact possibility of hospitalization due to CHF. A total 7473 Patients were included in the study from Jan. 2008 to Dec. 2008 as training cases. Another 8124 patients collected from Jan. 2009 to Dec. 2009 as test cases. Fifteen echocardiographic variables and two clinical variables were collected from hospitalization patients. ANN model was set up by training the network with data from training set and subsequently testing with data from another test set to determine the optimal ANN architecture. The optimal ANN topology was found to be a standard feed-forward, fully-connected, back-propagation multilayer perceptron. The overall accuracy rate of ANN was 97.2%, which is higher than that of logistic regression (LR) (96.6%). By using the area under the receiver operating characteristics (ROC) curve as a measure of performance, the ANN outperformed the LR (0.910±0.009 versus 0.895±0.011; p = 0.008). Therefore, the CHF hospitalization prediction model using ANN performs significantly better than using LR. But this phenomenon mandates further evaluation and research on other CHF population from other hospitals.
    關聯: 65頁
    描述: 標題 i
    審定書 i
    誌謝 ii
    目錄 iii
    表目錄 v
    圖目錄 vi
    論文摘要 viii
    Abstract ix
    第壹章 導論 1
    1.1 研究背景 1
    1.2 研究動機 3
    1.3 研究目的 5
    1.4 研究範圍與限制 7
    1.5 論文架構 8
    第貳章 文獻探討 9
    2.1 類神經網路在臨床的應用 9
    2.2 心臟衰竭的住院預測 11
    2.2.1 在高心血管風險族群中以血糖值來預測病人的心臟衰竭住院機會 11
    2.2.2 腎功能不全作為心臟衰竭再次住院的預測因子 12
    2.2.3 升高肺動脈壓來預測心臟衰竭的住院機會及死亡率 12
    2.3 使用類神經網路來預測病人因心臟衰竭而住院的問題 13
    第叄章 研究方法 14
    3.1 邏輯斯迴歸的理論基礎 15
    3.1.1 迴歸-預測性的演算法 15
    3.1.2 邏輯斯迴歸的基本模型 16
    3.2.1生物神經網路 18
    3.2.2 類神經網路的基本模型 19
    3.2.3 類神經網路的特性 26
    3.2.4 類神經網路的架構 27
    第肆章 資料分析 29
    4.1 心臟衰竭的住院條件 29
    4.2 變數的分析與選擇 30
    4.3 輸入變數的頻率分佈圖 39
    4.4 邏輯斯迴歸模式分析 45
    4.5 類神經網路模式分析 46
    4.6 邏輯斯迴歸與類神經網路的分析比較 50
    第伍章 總結 54
    5.1 結論 54
    5.2 未來研究方向 56
    參考文獻 58


    1. Cordisco, M.E., et al. (1999). Use of telemonitoring to decrease the rate of hospitalization in patients with severe congestive heart failure. Am J Cardiol, 84(7), 860-2, A8.
    2. Krumholz, H.M., et al. (1997). Readmission after hospitalization for congestive heart failure among Medicare beneficiaries. Arch Intern Med, 157(1), 99-104.
    3. Hunt, S.A., et al. (2005). ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol, 46(6), e1-82.
    4. Hunt, S.A., et al. (2005). ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation, 112(12), e154-235.
    5. Jessup, M. and Brozena, S. (2003). Heart failure. N Engl J Med, 348(20), 2007-18.
    6. 行政院衛生署 (民 97)。97年醫療統計年報.
    7. Levy, D., et al. (1987). Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am J Cardiol, 59(9), 956-60.
    8. Vitarelli, A., et al. (2003). The role of echocardiography in the diagnosis and management of heart failure. Heart Fail Rev, 8(2), 181-9.
    9. McKee, P.A., et al. (1971). The natural history of congestive heart failure: the Framingham study. N Engl J Med, 285(26), 1441-6.
    10. Ho, K.K., et al. (1993). Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation, 88(1), 107-15.
    11. Ho, K.K., et al. (1993). The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol, 22(4 Suppl A), 6A-13A.
    12. Baxt, W.G. (1995). Application of artificial neural networks to clinical medicine. Lancet, 346(8983), 1135-8.
    13. Eberhart, R.C., Dobbins, R.W. and Hutton, L.V. (1991). Neural network paradigm comparisons for appendicitis diagnosis. In: Proceedings of the fourth annual IEEE Symposium on Computer-based Medical Systems. 298-304.
    14. Bounds, D.G., Lloyd, P.J. and Mathew, B.G. (1990). A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders. Neural Networks, (3), 583-91.
    15. Mulsant, G.H. and Servan-Schrieber, E. (1988). A connectionist approach to the diagnosis of dementia. In: Proceedings of 12th annual symposium on 1138 Computer Applications in Medical Care, Washington, DC, 245-50.
    16. Hart, A. and Wyatt, J. (1989). Connectionist models in medicine: an investigation of their potential. In: Proceedings of AIME’89 (2nd European conference on Artificial Intelligence in Medicine, London, 1989): Lecture notes in medical informatics: vol XXXVIII. Heidelberg: Springer, 115-24.
    17. Baxt, W.G. (1990). Use of an artificial neural network for data analysis in clinical decision-making: the diagnosis of acute coronary occlusion. Neural Computation, (2), 480-89.
    18. Harrison, R.F., Marshall, S.J. and Kennedy, R.L. (1991). The early diagnosis of heart attacks: a neurocomputational approach. In: Proceedings of the International Joint Conference on Neural Networks. I, 1-5.
    19. Baxt, W.G. (1991). Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med, 115(11), 843-8.
    20. Baxt, W.G. and Skora, J. (1996). Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet, 347(8993), 12-5.
    21. Somoza, E. and Somoza, J.R. (1993). A neural-network approach to predicting admission decisions in a psychiatric emergency room. Med Decis Making, 13(4), 273-80.
    22. Patil, S., et al. (1993). Neural network in the clinical diagnosis of acute pulmonary embolism. Chest, 104(6), 1685-9.
    23. Agyei-Mensah, S.O. and Lin, F.C. (1992). Application of neural networks in medical diagnosis: the case of sexually-transmitted diseases. Australas Phys Eng Sci Med, 15(4), 186-92.
    24. Yoon, Y.O.e.a. (1989, summer) A desktop neural network for dermatology diagnosis. J Neural Net Comp, 43-52.
    25. Astion, M.L., et al. (1994). Application of neural networks to the classification of giant cell arteritis. Arthritis Rheum, 37(5), 760-70.
    26. Reinus, W.R., et al. (1994). Diagnosis of focal bone lesions using neural networks. Invest Radiol, 29(6), 606-11.
    27. Lo, S.C., et al. (1993). Automatic lung nodule detection using profile matching and back-propagation neural network techniques. J Digit Imaging, 6(1), 48-54.
    28. Wu, Y., et al. (1993). Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology, 187(1), 81-7.
    29. Gross, G.W., et al. (1990). Neural networks in radiologic diagnosis. II. Interpretation of neonatal chest radiographs. Invest Radiol, 25(9), 1017-23.
    30. Boone, J.M., Gross, G.W. and Greco-Hunt, V. (1990). Neural networks in radiologic diagnosis. I. Introduction and illustration. Invest Radiol, 25(9), 1012-6.
    31. Lin, J.S., et al. (1993). Application of artificial neural networks for reduction of false-positive detections in digital chest radiographs. Proc Annu Symp Comput Appl Med Care, 434-8.
    32. Kippenhan, J.S., et al. (1994). Neural-network classification of normal and Alzheimer's disease subjects using high-resolution and low-resolution PET cameras. J Nucl Med, 35(1), 7-15.
    33. Kippenhan, J.S., et al. (1992). Evaluation of a neural-network classifier for PET scans of normal and Alzheimer's disease subjects. J Nucl Med, 33(8), 1459-67.
    34. Hare, B.J. and Prestegard, J.H. (1994). Application of neural networks to automated assignment of NMR spectra of proteins. J Biomol NMR, 4(1), 35-46.
    35. Datz, F.L., et al. (1993). The use of computer-assisted diagnosis in cardiac perfusion nuclear medicine studies: a review (Part 3). J Digit Imaging, 6(2), 67-80.
    36. Datz, F.L., et al. (1993). The use of computer-assisted diagnosis in cardiac perfusion nuclear medicine studies: a review (Part 2). J Digit Imaging, 6(1), 1-15.
    37. Chan, K.H., et al. (1994). A neural network classifier for cerebral perfusion imaging. J Nucl Med, 35(5), 771-4.
    38. Bortolan, G. and Willems, J.L. (1993). Diagnostic ECG classification based on neural networks. J Electrocardiol, 26 Suppl, 75-9.
    39. Edenbrandt, L., Heden, B. and Pahlm, O. (1993). Neural networks for analysis of ECG complexes. J Electrocardiol, 26 Suppl, 74.
    40. Hu, Y.H., et al. (1993). Applications of artificial neural networks for ECG signal detection and classification. J Electrocardiol, 26 Suppl, 66-73.
    41. Devine, B. and Macfarlane, P.W. (1993). Detection of electrocardiographic 'left ventricular strain' using neural nets. Med Biol Eng Comput, 31(4), 343-8.
    42. Edenbrandt, L., Devine, B. and Macfarlane, P.W. (1993). Classification of electrocardiographic ST-T segments--human expert vs artificial neural network. Eur Heart J, 14(4), 464-8.
    43. Yang, T.F., Devine, B. and Macfarlane, P.W. (1993). Deterministic logic versus software-based artificial neural networks in the diagnosis of atrial fibrillation. J Electrocardiol, 26 Suppl, 90-4.
    44. Edenbrandt, L., Devine, B. and Macfarlane, P.W. (1992). Neural networks for classification of ECG ST-T segments. J Electrocardiol, 25(3), 167-73.
    45. Suzuki, Y. and Ono, K. (1992). Personal computer system for ECG ST-segment recognition based on neural networks. Med Biol Eng Comput, 30(1), 2-8.
    46. Evans, S.J., Hastings, H. and Bodenheimer, M.M. (1994). Differentiation of beats of ventricular and sinus origin using a self-training neural network. Pacing Clin Electrophysiol, 17(4 Pt 1), 611-26.
    47. Clayton, R.H., Murray, A. and Campbell, R.W. (1994). Recognition of ventricular fibrillation using neural networks. Med Biol Eng Comput, 32(2), 217-20.
    48. Farrugia, S., Yee, H. and Nickolls, P. (1993). Implantable cardioverter defibrillator electrogram recognition with a multilayer perceptron. Pacing Clin Electrophysiol, 16(1 Pt 2), 228-34.
    49. Guo, Z., et al. (1994). Artificial neural networks in computer-assisted classification of heart sounds in patients with porcine bioprosthetic valves. Med Biol Eng Comput, 32(3), 311-6.
    50. Kloppel, B. (1994). Application of neural networks for EEG analysis. Considerations and first results. Neuropsychobiology, 29(1), 39-46.
    51. Anderer, P., et al. (1994). Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers. Electroencephalogr Clin Neurophysiol, 91(2), 108-17.
    52. Kloppel, B. (1994). Classification by neural networks of evoked potentials. A first case study. Neuropsychobiology, 29(1), 47-52.
    53. Kloppel, B. (1994). Neural networks as a new method for EEG analysis. A basic introduction. Neuropsychobiology, 29(1), 33-8.
    54. Jando, G., et al. (1993). Pattern recognition of the electroencephalogram by artificial neural networks. Electroencephalogr Clin Neurophysiol, 86(2), 100-9.
    55. Bankman, I.N., et al. (1992). Feature-based detection of the K-complex wave in the human electroencephalogram using neural networks. IEEE Trans Biomed Eng, 39(12), 1305-10.
    56. Masic, N. and Pfurtscheller, G. (1993). Neural network based classification of single-trial EEG data. Artif Intell Med, 5(6), 503-13.
    57. Doig, G.S.e.a. (1993). Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression. In: Proceedings of annual symposium on Computers Applied to Medical Care, 361-65.
    58. Buchman, T.G., et al. (1994). A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit. Crit Care Med, 22(5), 750-62.
    59. Grigsby, J., Kooken, R. and Hershberger, J. (1994). Simulated neural networks to predict outcomes, costs, and length of stay among orthopedic rehabilitation patients. Arch Phys Med Rehabil, 75(10), 1077-81.
    60. Tu, J.V. and Guerriere, M.R. (1992). Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. In: Proceedings of annual symposium on Computers Applied to Medical Care, 666-72.
    61. Ebell, M.H. (1993). Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation. J Fam Pract, 36(3), 297-303.
    62. Snow, P.B., Smith, D.S. and Catalona, W.J. (1994). Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J Urol, 152(5 Pt 2), 1923-6.
    63. Burke, H.B. (1994). Artificial neural networks for cancer research: outcome prediction. Semin Surg Oncol, 10(1), 73-9.
    64. Ravdin, P.M. and Clark, G.M. (1992). A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat, 22(3), 285-93.
    65. Ravdin, P.M., et al. (1992). A demonstration that breast cancer recurrence can be predicted by neural network analysis. Breast Cancer Res Treat, 21(1), 47-53.
    66. Wilding, P., et al. (1994). Application of backpropagation neural networks to diagnosis of breast and ovarian cancer. Cancer Lett, 77(2-3), 145-53.
    67. Astion, M.L. and Wilding, P. (1992). The application of backpropagation neural networks to problems in pathology and laboratory medicine. Arch Pathol Lab Med, 116(10), 995-1001.
    68. Astion, M.L. and Wilding, P. (1992). Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clin Chem, 38(1), 34-8.
    69. Kappen, H.J. and Neijt, J.P. (1993). Advanced ovarian cancer. Neural network analysis to predict treatment outcome. Ann Oncol, 4 Suppl 4, 31-4.
    70. Doyle, H.R., et al. (1994). Predicting outcomes after liver transplantation. A connectionist approach. Ann Surg, 219(4), 408-15.
    71. Katz, A.S., et al. (1993). Prediction of valve-related complications for artificial heart valves using adaptive neural networks: a preliminary study. J Heart Valve Dis, 2(5), 504-8.
    72. Katz, S., et al. 1994. Neural net-bootstrap hybrid methods for prediction of complications in patients implanted with artificial heart valves. J Heart Valve Dis, 3(1), 49-52.
    73. Dybowski, R. and Gant, V. (1995). Artificial neural networks in pathology and medical laboratories. Lancet, 346(8984), 1203-7.
    74. Weinstein, N.J.e.a. (1994). Predictive statistics and artificial intelligence in the US National Cancer Institute’s Drug Discovery Program for Cancer and AIDS. Stem Cells, (12), 13-22.
    75. Narayanan, M.N. and Lucas, S.B. (1993). A genetic algorithm to improve a neural network to predict a patient's response to warfarin. Methods Inf Med, 32(1), 55-8.
    76. Veng-Pedersen, P. and Modi, N.B. (1993). Application of neural networks to pharmacodynamics. J Pharm Sci, 82(9), 918-26.
    77. Held, C., et al. 2007. Glucose levels predict hospitalization for congestive heart failure in patients at high cardiovascular risk. Circulation, 115(11), 1371-5.
    78. Komukai, K., et al. (2008). Decreased renal function as an independent predictor of re-hospitalization for congestive heart failure. Circ J, 72(7), 1152-7.
    79. Ristow, B., et al. (2007). Elevated pulmonary artery pressure by Doppler echocardiography predicts hospitalization for heart failure and mortality in ambulatory stable coronary artery disease: the Heart and Soul Study. J Am Coll Cardiol, 49(1), 43-9.
    80. 林傑斌、林川雄、劉明德 (民 93)。 SPSS 12 統計建模與應用實務。台北縣:博碩文化。
    81. 唐麗英、王春和 (民 94)。 Statistica 6.0版與基礎統計分析。台北市:儒林圖書公司。
    82. Dayton, C.M. (1992). Logistic regression analysis. Department of Measurement, Statistics & Evaluation, University of Maryland.
    83. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev, 65(6), 386-408.
    84. Minsky, M.L. and Papert, S.A. (1969). Perceptrons. Cambridge, MA: MIT Press.
    85. Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A, 79(8), 2554-8.
    86. Hopfield, J.J. and Tank, D.W. (1985). "Neural" computation of decisions in optimization problems. Biol Cybern, 52(3), 141-52.
    87. Williams, R.J. and Zipser, D. (1994). Gradient-based learning algorithms for recurrent networks and their computational complexity. In Back-propagation: Theory, Architectures and Applications. Hillsdale, NJ: Erlbaum.
    88. Liu, Y. and R, H. (2005). Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. Journal of Geophysical Research, 110, 12.
    89. Liu, Y., Weisberg, R.H. and Mooers, C.N.K. (2006). Performance evaluation of the self-organizing map for feature extraction. of Geophysical Research, 111, 14.
    90. 葉怡成 (民 89)。類神經網路模式應用與實作。台北市:儒林圖書。
    91. 蘇木春,張孝德 (民 89)。機器學習:類神經網路、模糊系統以及基因演
    算法則。台北縣:全華科技圖書。
    92. 周鵬程 (民 90)。遺傳演算法原理與應用-活用Matlab。台北縣:全華科技圖書。
    93. 羅華強 (民 90)。類神經網路-MATLAB 的應用。新竹市:清蔚科技。
    94. 鄭錦聰 (民 89)。MATLAB 程式設計基礎篇。台北縣:全華科技圖書。
    95. Tank, D.W. and Hopfield, J.J. (1987). Collective computation in neuronlike circuits. Sci Am, 257(6), 104-14.
    96. Tank, D.W. and Hopfield, J.J. (1987). Neural computation by concentrating information in time. Proc Natl Acad Sci U S A, 84(7), 1896-900.
    97. Criteria Committee, New York Heart Association. (1964). Diseases of the heart and blood vessels. Nomenclature and criteria for diagnosis. 6th ed. Boston: Little, Brown and co, 114.
    98. Graff, L., et al. (1999). Correlation of the Agency for Health Care Policy and Research congestive heart failure admission guideline with mortality: peer review organization voluntary hospital association initiative to decrease events (PROVIDE) for congestive heart failure. Ann Emerg Med, 34(4 Pt 1), 429-37.
    99. Rutter, M.K., et al. (2003). Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation, 107(3), 448-54.
    100. Devos, P., et al. (2006). Glucose, insulin and myocardial ischaemia. Curr Opin Clin Nutr Metab Care, 9(2), 131-9.
    101. Yokoi, T., et al. (2006). Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes, 55(6), 1660-5.
    102. Holmang, A., et al. (1996). The effects of hyperinsulinaemia on myocardial mass, blood pressure regulation and central haemodynamics in rats. Eur J Clin Invest, 26(11), 973-8.
    103. Ingelsson, E., et al. (2005). Insulin resistance and risk of congestive heart failure. JAMA, 294(3), 334-41.
    104. Ingelsson, E., et al. (2005). Novel metabolic risk factors for heart failure. J Am Coll Cardiol, 46(11), 2054-60.
    105. Schiffrin, E.L., Lipman, M.L. and Mann, J.F. (2007). Chronic kidney disease: effects on the cardiovascular system. Circulation, 116(1), 85-97.
    106. Brewster, U.C., Setaro, J.F. and Perazella, M.A. (2003). The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci, 326(1), 15-24.
    107. Kawaguchi, H. and Kitabatake, A. (1995). Renin-angiotensin system in failing heart. J Mol Cell Cardiol, 27(1), 201-9.
    108. Berger, A.K., et al. (2007). Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients with congestive heart failure and chronic kidney disease. Am Heart J, 153(6), 1064-73.
    109. Joles, J.A. and Koomans, H.A. (2004). Causes and consequences of increased sympathetic activity in renal disease. Hypertension, 43(4), 699-706.
    110. Koomans, H.A., Blankestijn, P.J. and Joles, J.A. (2004). Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol, 15(3), 524-37.
    111. Cohn, J.N., et al. (1981). Neurohumoral control mechanisms in congestive heart failure. Am Heart J, 102(3 Pt 2), 509-14.
    顯示於類別:[醫學資訊研究所] 博碩士論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋