資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/33774
|
題名: | 正常光暗周期下大鼠海馬迴中誘導型一氧化氮生成酶之基因表達與機制研究 |
作者: | 謝家瑜 |
貢獻者: | 醫學科學研究所 |
日期: | 2010-01 |
上傳時間: | 2010-08-31 11:18:48 (UTC+8) |
摘要: | 摘要
「日變節律」是動物經由光照刺激透過視交叉上核,將體內每日的生理週期與外界環境,約略以24小時的節律作同步化規律性循環。研究指出CREB及nNOS在視交叉上核中有節律性表達,而當日變節律受到干擾則會造成iNOS增加,然而在目前仍未知正常光暗周期下iNOS的表達變化。
為了解iNOS在日變節律受到干擾後大量表現的機轉,首先探討iNOS在日變節律中的節律變化,12小時光照-12小時黑暗及24小時全暗的條件下,以RT-PCR探測大鼠大腦皮質、海馬迴及血中iNOS之表達,以及西方墨點分析法觀察海馬迴iNOS及phospho-CREB蛋白質量的變化,並更進一步以染色質免疫沉澱分析法觀察轉錄因子phospho-CREB與iNOS啟動子結合的現象。結果發現海馬迴iNOS基因表達高峰期出現在ZT 6及ZT 22;海馬迴iNOS 蛋白質則呈現節律性的表達,而其高峰期出現在ZT 18出現,且發現iNOS蛋白質量於iNOS mRNA表達增加的時間點-ZT 22之後有逐漸增加的現象,於ZT 8達到高峰;再者調控日變節律基因表達之轉錄因子的實驗結果顯示,磷酸化態的CREB蛋白質量於黑暗期比光亮期多,其高峰則出現在ZT 18及ZT 22,而轉換到光亮期後,CREB磷酸化態蛋白質則呈現低點;而由在染色質免疫沉澱分析
法的實驗中也證實於ZT18,磷酸化態CREB會結合至iNOS啟動子上;再者我們發現血中iNOS基因表達與海馬迴iNOS基因表達呈現同步的現象。
綜合以上之研究顯示海馬迴iNOS在正常光暗周期中存在日變節律,且會透過CREB的磷酸化調節iNOS基因的表達。
Abstract
Suprachiasmatic nucleus (SCN) is the circadian pacemaker of the brain. This clock can be modulated by afferent inputs in response to a variety of external and internal cues. Recent studies showed that cAMP response element binding protein (CREB) and neuronal nitric oxide synthase (nNOS) are rhythmically expressed in SCN. On the other hand, circadian rhythm disturbance induced expression of inducible NOS (iNOS). However, how iNOS expressed rhythmicallly in normal circadian rhythm remains unknown. We explored the circadian rhythm of iNOS expression by RT-PCR in detection of iNOS mRNA in cerebral cortex, hippocampus and peripheral blood;Western blot analysis was used for determination of iNOS protein and phosphorylated CREB under a 12-hour light / dark cycle and 24-hour darkness condition. The chromatin immunoprecipitation (ChIP) assay was used for figuring out the transcriptional event of iNOS expression. The results showed that the rhythms of iNOS mRNA expression had increasing peaks at ZT 6 and ZT 22, and iNOS protein level also had rhythmically expression with peak at ZT 18. Remarkably, iNOS protein levels were increased in light phase after ZT 22 which is the time of the increasing peak of iNOS mRNA. Furthermore, phospho-CREB, the activated form of CREB, had higher expressed levels at ZT 18 and ZT 22, and in ChIP assay showed that phospho-CREB bound to iNOS promoter at ZT 18. Whereas, there had no significant changes on phospho-CREB and iNOS under the 24-hour darkness condition without light-darkness shifting. Interestingly, we found that the level of iNOS mRNA in hippocampus is closely parallel and correlated with the level of iNOS mRNA in the peripheral blood. In conclusion, we demonstrated that iNOS is rhythmically expressed in hippocampus during normal light-dark cycle and it seems to be mediated by the activation of CREB, which might be affected by light-dark cycle. |
關聯: | 65頁 |
描述: | 目錄
中文摘要.……………………………………………………………… I
英文摘要……………………………………………………………… III
目錄 …………………………………………………………………… V
圖目錄……………………………………………………………………VI
附錄……………………………………………………………………VII
緒論………………………………………………………………………01
實驗目的…………………………………………………………………12
實驗材料及方法…………………………………………………………13
結果………………………………………………………………………24討論………………………………………………………………………29
結論………………………………………………………………………37
未來展望…………………………………………………………………38
圖表及說明………………………………………………………………39
Fig. 1. The expression of iNOS mRNA in hippocampus, cerebral cortex and buffy coat of rats under 12L/12D cycle …………………………………………………………………………40
Fig. 2. The expression of iNOS mRNA in hippocampus of rats under 12L/12D cycle ………………………………………………41
Fig. 3. The expression of iNOS mRNA in buffy coat of rats under 12L/12D cycle ……………………………………………42
Fig. 4. The levels of phospho-CREB protein increased in the dark phasein hippocampus of rat under 12L/12D cycle ……43
Fig. 5. iNOS protein shows circadian rhythm in hippocampus under 12L/12D cycle ………………………………………………44
Fig. 6 The activated phospho-CREB binds to CRE of rat iNOS (NOS2) promoter at ZT 18 under 12L/12D cycle ………………45
Fig. 7. The expression of iNOS mRNA in hippocampus under 12D/12D cycle ……………………………………………………47
Fig. 8. The expression of phospho-CREB in hippocampus under 12D/12D cycle ………………………………………………………48
Fig. 9. The expression of iNOS protein in hippocampus under 12D/12D cycle ………………………………………………………49
Fig. 10. Schematic illustration of phospho-CREB mediated transcriptional activation of iNOS in hippocampus under normal light dark cycle …………………………………………50
附錄………………………………………………………………………51
Appendix 1. The model of self-sustaining, rhythm-generating, molecular feedback loops in mammals …………52
Appendix 2. The model of the signal transduction pathway responsible for light- induced phase advances and delays of the circadian clock ………………………………………………53
Appendix 3. Schematic illustration of the structural domains of NOS homodimer ………………………………………54
Appendix 4. Schematic illustration of rat NOS2 promoter region…………………………………………………………………55
參考文獻………………………………………………………………56
參考文獻
Abe H, Rusak B and Robertson HA. (1991) Photic induction of Fos protein in the suprachaismatic nucleus is inhibited by the NMDA receptor antagonist MK-801. Neurosci Lett 127:9-12.
Albus H, Vansteensel MJ, Michel S, Block GD and Meijer JH. (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886–93.
Albrecht U, Sun ZS, Eichele G and Lee CC. (1997) A differential re-sponse of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064.
Agostino PV, Ferreyra GA, Murad AD, Watanabe Y and Golombek DA. (2004) Diurnal, circadian and photic regulation of cal-cium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochemistry International 44:617-625.
Antoniadis EA, Ko CH, Ralph MR and Mcdonald RJ. (2000) Circadian rhtthms, aging and memory. Behav. Brain Res 111:25-37.
Aronson BD, Bell-Pedersen D, Block GD, Bos NP, Dunlap JC, Eskin A, Garceau NY, Geusz ME, Johson KA and Khlsa SB. (1993) Circadian rhythms. Brain Res Rev 18:315-333.
Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T, Akiyama M and Shibata S. (2001) Circadian profile of per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 66:1133-1139.
Beckett M and Roden LC. (2009) Mechanisms by which circadian rhythm disruption may lead to cancer. S. Afr. j. sci. 105:11-12.
Bernard S, Gonze D, Cajavec B, Herzel H and Kramer A. (2007) Syn-chronization- induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput Biol 3:e68.
Berson DM, Dunn FA and Takao M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–3.
Berson DM. (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–20.
Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-
Fer-nandez S and Almeida A. (2008) Regulation of glycolysis and pentose–phosphate pathway by nitric oxide:Impact on neuronal survival. Biochimica Biophysica Acta 1777: 789–793.
Buijs RM, Scheer FA and Kreier F, et al. (2006) Organization of circa-dian functions: interaction with the body. Prog Brain Res 153:341–60.
Chourbaji S, Brandwein C, Gau D, Depner M, Saam C, Johansson C, Schalling M, Partonen T, Kasper S, Adolfsson R, Urani A, Lem-berger T, Schütz G, Schumann G and Gass P. (2008) CREB-regulated diurnal activity patterns are not indicative for depression-like symptoms in mice and men. Medical Hypotheses 70:117–21.
Cho K, Ennaceur A, Cole JC and Suh CK. (2000) Chronic jet lag pro-duces cognitive deficits. J Neurosci 20:RC66.
Cohen-Armon M, Visochek L, Katzoff A, Levitan D, Susswein AJ, Klein R, Valbrun M and Schwartz JH. (2004) Long-term memory requires polyADP-ribosylation. Science 18: 1820-22.
Colwell CS. (2001) NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 13:1420-8
Colwell CS and Menaker M. (1992) NMDA as well non-NMDA receptor antagonist can prevent the phase shifting effects of light on circadian system of the golden hamster. J Biol Rhythms 7:125-136.
Deboer T, Vansteensel MJ, Detari L and Meijer JH. (2003) Sleep states alteractivity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–90.
Devan BD, Goad EH, Petri HL, Antoiadis EA, Hong NS, Ko CH, Leblanc L, Lebovic SS, Lo Q, Ralph MR and McDonald RJ. (2001) Circadian phase-shifted rats show normal acquisition, but impaired long-term retention of place information in the water task. Neurobiol Learn Mem 75:51-62.
Ding JM, Chen D, Weber ET, Faiman LE, Rea MA and Gillette MU. (1994) Resetting the biological clock: mediation of nocturnal circadian shift by glutamate and NO. Science 266:1713-17.
Echeverria V, Burgess S, Gamble-George J, Zeitlin R, Lin X, Cao C and Arendash GW. (2009) Sorafenib inhibits nuclear factor kappa B, decreases inducible nitric oxide synthase and cyclooxygenase-2 expression, and restores working memory in APPswe mice. Neuroscience 15:1220-31.
Elena G and Douglas F. (1999) Regulation of the expression of the in-flammatory nitric oxide synthase (NOS2) by cyclic AMP. FASEB J 13:2125-37.
Ferreyra GA, Cammarota MP and Golombek DA.(1998) Photic control of nitric oxide synthase activity in the hamster suprachiasmatic nuclei. Brain Res 797:190–196.
Fugen A. (2004) iNOS-mediated nitric oxide production and its regulation. Life Sciences 75:639–653.
Fukushima T, Shimazoe T, Shibata S, Watanabe A, Ono M, Hamada T and Watanabe S. (1997) The involvement of calmodulin and Ca2+ /calmodulin-dependent protein kinase II in the circadian rhythms controlled by suprachiasmatic nucleus. Neurosci Lett 227:45-48.
Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW and Schütz G. (2002) Phosphorylation of CREB ser142 regulates light-induced phase shiftsof the circadian clock. Neuron 34:245–53 .
Gautier-Sauvigné S, Colas D, Parmantier P, Clement P, Gharib A, Sarda N and Cespuglio R. (2005) Nitric oxide and sleep. Sleep Medicine Reviews 9:101–113.
Ginty, DD, Kornhauser, JM, Thompson, MA, Bading, H, Mayo, KE, Takahashi, JS and Greenberg, ME. (1993) Regulation of CREB phosphorylation in the suprachaismatic nucleus by light and circadian clock. Science 260:238-41.
Golombek DA and Ralph MR. (1994) KN-62, an inhibitor of Ca2+ /calmodulin kinase II, attenuates circadian responses to light. Neuroreport 5:1638-40.
Golombek DA, Ferreyra GA, Agostino PV, Murad AD, Rubio MF, Pizzio GA, Katz ME, Marpegan L and Bekinschtein TA. (2003) From light to genes: moving the hands of the circadian clock. Front Biosci 8:285-93.
Golombek DA, Agostino PV, Plano SA and Ferreyra GA. (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem Int 45:929-36.
Harrington ME and Rusak B. (1986) Lesions of the thaoamic intergeniculate leaflet alter hamster circadian rhythms. J Biol Rhythms 1:309-325.
Hasselmo ME. (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Neurosci 3:351-59.
Hatfield CE, Herbert J, van Someren EJW, Hodges JR and
Hastings MH. (2004) Disruption daily activity/rest sessions in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s disease. Brain 127:1061-1074.
Hendickson AE, Wagoner N and Cowan WM. (1972) An autoradio-graphic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch Mikrosk Anat 135:1-26.
Henna-Kaisa MW and Tarja PH. (2009) Inducible nitric oxide synthase and AMP- activated protein kinase in basal forebrain during prolonged waking. NeuroReport 20:97-101.
Ibuka N and Kawamura H. (1975) Loss of circadian rhythm in sleep– wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res 96:76–81.
Indic P, Schwartz WJ, Herzog ED, Foley NC and Antle MC. (2007) Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus. J Biol Rhythms 22:211–19.
Ing-Jy Tseng, Hsing-cheng Liu, Rey-Yue Yuan, Jau-Jiuan Sheu, Jia-Ming Yu and Chaur-Jongh Hu. (2010) Expression of inducible nitric oxide synthase (iNOS) and period 1 (PER1) clock gene products in different sleep stages of patients with cognitive impairment. J Clin Neurosci doi:10.1016.
Inouye ST and Kawamura H. (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic ‘‘island’’ containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76:5962–6.
Jaime MM, Hector H, Ana P, Daniel M and Patricia B. (1999) Role of nitric oxide in sleep regulation: effects of L-NAME, an inhibitor of nitric oxide synthase, on sleep in rats. Behav Brain Res 100:197–205.
James FO, Cermakian N and Boivin DB. (2007) Circadian thythms of melatonin, cortisol, and clock gene expression during simulated night shift work. Sleep 30:1427-36.
Kalinchuk AV, Stenberg D, Rosenberg PA and Porkka-Heiskanen T. (2006) Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur J Neurosci 24:1443–56.
Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau LS, Ruiter M, Kreier F, Caiotto C and Buijs RM. (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458–69.
Kandel ER. (2001) The molecular biology of memory storage: a dialo-gue between genes and synapses. Biosci Rep 21:565-611
Katoh-Semba R, Tsuzuki M, Miyazaki N, Matsuda M, Nakagawa C, Ichisaka S, Sudo K, Kitajima S, Hamatake M, Hata Y and Nagata K. (2008) A phase advance of the light-dark cycle stimulates production of BDNF, but not of other neurotrophins, in the adult rat cerebral cortex : association with the activation of CREB. J. Neurochem 106:2131–242.
Kleinert H, Pautz A, Linker K and Schwarz PM. (2004) Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500:255– 266.
Ko CH and Takahashi JS. (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:271–77.
Kriegsfeld LJ, Demas GE, Lee Jr SE, Dawson TM, Dawson VL and Nelson RJ. (1999). Circadian locomotor analysis of male mice lacking the gene for neuronal nitric oxide synthase (nNOS-/-). J Biol Rhythms 14:20–27.
Krout KE, Kawano J, Mettenleiter TC and Loewy AD. (2002) CNS inputs to the suprachiasmatic nucleus of the rat. Neurosci 110:73-92.
Laurel G, Allan P and Ted A. (2001) Sleep and memory: a molecular perspective. Trends Neurosci 24:237-43.
Li RC, Row BW, Kheirandish L, Brittian KR, Gozal E, Guo SZ, Sachleben LR Jr and Gozal D. (2004) Nitric oxide synthase and intermittent hypoxia-induced spatial learning deficits in the rat. Neurobiol Dis 17:44-53.
Marletta MA. (1993) Nitroc oxide synthase structure and mechanism. J Biol Chem 268:12231-4.
Markov D and Goldman M. (2006) Normal sleep and circadian rhythms: neurobiologic mechanisms underlying sleep and wakefulness. Psychiatr Clin North Am 29:841–53.
Maywood ES, O’Neill J, Wong GK, Reddy AB and Hastings MH. (2006) Circadian timing in health and disease. Prog Brain Res 153:253–69.
Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM and Calixto JBJ. (2007) Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer's disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. Neurosci 27:5394-404.
Meijer JH and Rietveld WJ. (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671-707.
Mendoza J, Graff C, Dardente H, Pevert P and Challet E. (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25:1514-1522.
Melo L, Golombek DA and Ralph MR. (1997) Regulation of circadian photic responses by nitric oxide. J Biol Rhythms 12:319–326.
Moga MM and Moore RY. (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389:508-534.
Monti JM, Jantos H and Monti D. (2001) Increase of waking and reduction of NREM and REM sleep after nitric oxide synthase inhibition: prevention with GABAA or adenosine A1 receptor agonists. Behav Brain Res 123:23–35.
Moore RY and Card JP. (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344:403-430.
Moore RY and Klein DC. (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltrans- ferase activity. Brain Res 71:17 –33.
Moore RY, Speh JC and Leak RK. (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98.
Moore RY. (1996) Entrainment pathways and the functional organization of the circadian system. Prog Brain Res 111:103–19.
Moore RY. (1996) Neural control of the pineal gland. Behav Brain Res 73:125–30.
Moore RY and Eichler VB. (1972) Loss of a circadian adrenal corticosterone rhythm following suprachaismatic lesions in the rat. Brain Rev 42:201-206.
Moro MA, De Alba J, Leza JC, Lorenzo P, Fernandez AP, Bentura ML, Bosca L, Rodrigo J and Lizasoain I. (1998) Neuronal expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. Eur J Neurosci 10:445-56.
Moruzzi G and Magoun HW. (1949) Brain stem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol 1:455–73.
Nauta WJH. (1946) Hypothalamic regulation of sleep in rats. Neurophysiol 9:285– 316.
Nathan C and Xie QW. (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725-28.
Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP and Maze M. (2002) The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5:979-84.
Pennartz CM, Hamstra R and Geurtsen AM. (2001) Enhanced NMDA receptor activity in retinal inputs to the rat suprachiasmatic nucleus during the subjective night. J. Phsiol 532:181-94.
Perry E, Walker M, Grace J and Perry R. (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness. Trends Neurosci 22:273–280.
Pfeffer M, Müller CM, Mordel J, Meissl H, Ansari N, Deller T, Korf HW and von Gall C. (2009) The mammalian molecular clockwork controls rhythmic expression of its own input pathway components. J Neurosci 13:6114-23.
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF and Rollag MD. (2000) A novel human opsin in the inner retina. J Neurosci 20:600-605.
Ralph MR, Foster RG, Davis FC and Menaker M. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–8.
Reppert SM and Weaver DR. (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–76.
Reppert SM and Weaver DR. (2002) Coordination of circadian timing in mammals. Nature 418:935–41.
Saper CB, Chou TC and Scammell TE. (2001) Sleep switch: hypo-tha-lamic control of sleep and wakefulness. Trends Neurosci 24:726–31.
Saper CB and Scammell TE, Lu J. (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–63.
Schaap J, Albus H, Vander-Leest HT, Eilers PH, Detari L and Meijer JH. (2003) Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci U S A 100:15994–9.
Schlierf G and Dorow E. (1973) Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrateinduction. J Clin Invest 52:732-40.
Silver R and Schwartz WJ. (2005) The suprachiasmatic nucleus is a func¬tionally heterogeneous timekeeping organ. Methods Enzymol 393:451-65.
Shieh KR. (2003) Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK, in the rat brain. Neurosci 118:831-843.
Shieh KR, Yang SC, Lu XY, Akil H and Watson SJ. (2005) Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPe-riod2, and rClock, in the rat brain. J Biomed Sci 12:209-17.
Stephan FK and Zucker I. (1972) Circadian rhythm in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583-1586.
Stephan FK and Kovacevic FA. (1978) Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions. Behav Biol 22:456-462.
Stickgold R and Walker MP. (2007) Sleep-dependent memory consolidation and reconsolidation. Sleep Med 8:331–43.
Travnickova-Bendova Z, Cermakian N, Reppert SM and Sassone-Corsi P. (2002) Bimodal regulation of mPeriod promoters by CREB- dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 99:7728 –33.
van den Pol AN, Finkbeiner SM and Cornell-Bell AH. (1992) Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci 12: 2648-64.
Vandewalle G, Maquet P and Dijk DJ. (2009) Light as a modulator of cognitive brain function. Trends Cogn Sci 13:429-38.
Watanabe A, Ono M, Shibata S and Watanabe S. (1995). Effect of a nitric oxide synthase inhibitor, N-nitro-l-arginine methyl ester, on light-induced phase delay of circadian wheel-running activity in golden hamsters. Neurosci Lett 192:25–28.
Welsh DK, Logothetis DE, Meister M and Reppert SM. (1995) Indi-vidual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian finding rhythms. Neuron 14:697-706.
Wu G and Morris SMJ. (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 281:45-8.
Wu GY, Deisseroth K and Tsien RW. (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci 98:2808-13.
Yannielli P and Harrington ME. (2004) Let there be more light: en-hancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol 74: 59-76. |
顯示於類別: | [醫學科學研究所] 博碩士論文
|
在TMUIR中所有的資料項目都受到原著作權保護.
|