English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45422/58598 (78%)
造訪人次 : 2535817      線上人數 : 274
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/33743


    題名: Osthole衍生物降血糖活性之分子機轉探討
    作者: 黎宜寧
    貢獻者: 醫學科學研究所
    日期: 2010
    上傳時間: 2010-08-31 10:58:31 (UTC+8)
    摘要: 腺苷單磷酸活化蛋白激酶 (AMP-activated protein kinase, AMPK) 是一個絲胺酸/酥胺酸激酶,主要功能是會隨著能量的變化而調控細胞及器官的能量代謝,AMPK 的活化已經知道可減少循環中的葡萄糖、降低血漿中脂質和異常的脂肪堆積,進而增加胰島素的敏感性,因此,AMPK 的活化劑可用於預防或治療第二型糖尿病。先前研究指出,p38 是 mitogen-activated protein kinase (MAPK) 家族成員之一,其功能在骨骼肌中的葡萄糖攝取扮演重要的角色。過氧化物酶體增殖物激活受體 (peroxisome proliferator-activatived receptors, PPARs) 在許多生理作用中都扮演很重要的角色,例如:調控脂質、葡萄醣代謝及提高胰島素的敏感性等。在本實驗室先前的研究中發現,在糖尿病小鼠 (db/db mice) 與肥胖小鼠 (ob/ob mice) 中,osthole 可透過活化 PPAR???}???n與 AMPK 的路徑而達到降低血糖的效果。因此,本研究利用 osthole 衍生物探討其在動物體內及體外降血糖的功效。在 STZ (streptozotocin) 所誘導的糖尿病鼠中,osthole 衍生物 Wj1382-2 和 Wj25504-2 具有降低血糖效果。此外,利用 L6 老鼠骨骼肌細胞作為探討分子機轉的模式,在給予 osthole 衍生物 Wj1382-2 和 Wj25504-2 後,利用西方墨點法分析蛋白質的表現及變化,發現Wj1382-2 和 Wj25504-2 具有活化 AMPK 的能力,並抑制下游 Acetyl-CoA carboxylase (ACC) 的活性;另外,也可活化 p38 MAPK。接著利用葡萄糖攝取試驗觀察 Wj1382-2 和 Wj25504-2 是否會增加 L6 細胞對於葡萄糖攝取的能力,發現隨著 Wj1382-2 和 Wj25504-2 濃度的增加,細胞攝取葡萄糖的能力也隨之增加。由上述結果可知, Wj1382-2 和 Wj25504-2 可透過活化 AMPK 或 p38 MAPK 訊息路徑達到降血糖的效果,可能具有開發成為第二型糖尿病藥物的潛力。

    AMP-activated protein kinase (AMPK), a serine/threonine kinase, is implicated in the control of energy metabolism at both the cellular and organ levels. Activation of AMPK has been found to decrease circulating glucose, reduced plasma lipid, and ectopic fat accumulation, as well as enhanced insulin sensitivity, therefore AMPK activators may use for prevention or treatment of type 2 diabetes. Recent reports indicated that p38, a member of the mitogen-activated protein kinase (MAPK) family, plays a pivotal role in glucose uptake in skeletal muscles. Peroxisome proliferator-activatived receptors (PPARs) play a important role in control lipid metabolism, glucose metabolism and insulin sensitivity. Our previous studies found that osthole markedly reduced blood glucose level in db/db and ob/ob mice. The hypoglycemic activity might be associated with the activation of PPAR and AMPK. In this study, osthole derivatives were used to examine the hypoglycemic activity in vivo and in vitro. Osthole derivatives Wj1382-2 and Wj25504-2 significantly reduced blood glucose level in STZ-induced DM mice. In vitro study, mouse skeletal muscle cells L6 was used to examine the underlying molecular mechanisms of osthole derivatives Wj1382-2 and Wj25504-2 on hypoglycemic activity. Western blot analysis revealed that Wj1382-2 and Wj25504-2 induced the phosphorylation of AMPK, ACC and p38 MAPK. Next, we examined whether Wj1382-2 and Wj25504-2 could increase glucose uptake by a fluorescent glucose analog in L6 cells. We found that Wj1382-2 and Wj25504-2 significantly increased glucose uptake in a dose-dependent manner. Together, these results suggest that Wj1382-2 and Wj25504-2 may have hypoglycemic activity through AMPK or p38 MAPK signaling pathway, has potential as an antidiabetes agent for the treatment of type 2 diabetes.
    關聯: 61頁
    描述: 目錄(Contents)
    縮寫表 VI
    中文摘要 VIII
    Abstract IX
    第一章 緒論 (Introduction) 1
    壹、糖尿病 (Diabetes mellitus) 1
    一、糖尿病的定義 1
    二、糖尿病的種類 1
    三、糖尿病的發病機制 2
    四、糖尿病的併發症 4
    五、糖尿病診斷標準 4
    六、糖尿病的治療 4
    貳、胰島素訊息傳遞路徑 (Insulin signaling pathway) 6
    一、PI 3-kinase (PI3K) 的活化 7
    二、胰島素誘導之磷酸化連鎖反應 (Insulin-stimulated phosphorylation cascades)…………. 8
    三、Cbl/CAP 路徑與脂質筏 (Cbl/CAP pathway and lipid rafts) 9
    参、腺苷單磷酸活化蛋白激酶 (AMP-activated protein kinase, AMPK) 10
    一、AMPK 的結構與調控 10
    二、AMPK 與葡萄糖恆定 12
    三、AMPK 與糖尿病 13
    肆、p38有絲分裂活化蛋白激酶 (p38 mitogen-activated protein kinases, p38 MAPK) 13
    伍、過氧化物酶體增殖物激活受體 (Peroxisome proliferator-activatived receptors, PPARs) 14
    一、 PPARs 的結構與調控 15
    二、 PPAR?? 的介紹 16
    三、 PPAR?? 的介紹 16
    四、 PPAR ???}???n的介紹 17
    陸、研究動機 (Study aim) 18
    第二章 材料與方法 19
    壹、細胞培養 (Cell culture) 19
    一、人類肺癌細胞 (Human lung carcinoma cells) 19
    二、老鼠肌纖維母細胞 (Mouse myoblast cells) 19
    参、暫時性基因轉殖 (Transient transfection) 20
    肆、西方墨點法 (Western blotting) 20
    一、細胞蛋白質萃取 (Protein extraction) 20
    二、蛋白質定量分析 (Protein quantification) 21
    三、西方墨點法 (Western blotting) 21
    伍、細胞存活率之分析 (MTT assay) 22
    陸、葡萄糖攝取試驗 (Glucose uptake assay) 23
    柒、動物實驗 23
    一、篩選 Osthole 衍生物在 ICR 小鼠體內降血糖試驗 23
    捌、統計方法 ( statistics ) 25
    第三章 結果 (Results) 26
    一、篩選 osthole 衍生物具有活化 AMPK 的能力 26
    二、篩選 osthole 衍生物在動物體內具有降血糖功效 26
    三、Osthole 衍生物具有活化 PPAR?? 及 PPAR?? 的能力 27
    四、比較 osthole、osthole 衍生物 Wj1382-2 及 Wj25504-2 活化 AMPK、p38 MAPK 及葡萄糖攝取的能力 27
    五、Osthole 衍生物 Wj1382-2 及 Wj25504-2 在動物體內具有降血糖功效 28
    六、Osthole 衍生物 Wj1382-2 及 Wj25504-2 對於細胞的毒性測試 29
    七、Osthole 衍生物 Wj1382-2 及 Wj25504-2 具有促進細胞葡萄糖攝取的能力 29
    八、Osthole 衍生物 Wj1382-2 及 Wj25504-2 具有活化 AMPK 的能力 29
    九、Compound C 可以抑制由 Wj1382-2 及 Wj25504-2 誘發的 AMPK 磷酸化及葡萄糖攝取的能力 30
    十、Osthole 衍生物 Wj1382-2 及 Wj25504-2 具有增加 p38 MAPK 磷酸化的能力 30
    十一、SB203580 可以抑制由 Wj1382-2 及 Wj25504-2 誘發的 p38 MAPK 磷酸化及葡萄糖攝取的能力 31
    第四章 討論 (Discussion) 32
    第五章 參考文獻 (References) 38
    第六章 目次圖表 (Figures lists) 46
    Figure 1. Chemical structure of osthole and osthole derivatives. 46
    Figure 2. Screening osthole derivatives on phosphorylation of AMPK in skeletal muscle cells. 47
    Figure 3. Screening osthole derivatives has anti-diabetic effect in vivo experiment. 48
    Figure 4. The effects of osthole derivatives on activation of PPAR?? and PPAR?? in A549 cells. 49
    Figure 5. The comparison between osthole and osthole derivatives for of AMPK, p38 MAPK phosphorylation and glucose uptake on skeletal muscle cells. 50
    Figure 6. The effects of osthole derivatives on blood glucose level in STZ-induced diabetes mellitus mice. 51
    Figure 7. The effects of osthole derivatives on cell viability in skeletal muscle cells. 52
    Figure 8. The effects of osthole derivatives on glucose uptake in skeletal muscle cells. 53
    Figure 9. The effects of osthole derivatives Wj1382-2 on phosphorylation of AMPK and ACC in skeletal muscle cells in a dose- and time-dependent manner. 54
    Figure 10. The effects of osthole derivatives Wj25504-2 on phosphorylation of AMPK and ACC in skeletal muscle cells in a dose- and time-dependent manner. 55
    Figure 11. The effect of AMPK inhibitor Compound C on phosphorylation of AMPK and glucose uptake after osthole derivatives treatment in skeletal muscle cells. 56
    Figure 12. The effect of osthole derivatives Wj1382-2 on phosphorylation of p38 MAPK in skeletal muscle cells. 57
    Figure 13. The effect of osthole derivatives Wj25504-2 on p38 MAPK phosphorylation in skeletal muscle cells. 58
    Figure 14. The effect of p38 MAPK inhibitor SB203580 on phosphorylation of p38 MAPK and glucose uptake after osthole derivatives treatment in skeletal muscle cells. 59
    第七章 附錄 (Appendixes) 60

    1. Guilherme A, Virbasius JV, Puri V, Czech MP: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008, 9:367-377.
    2. Donnelly R, Emslie-Smith AM, Gardner ID, Morris AD: ABC of arterial and venous disease: vascular complications of diabetes. BMJ 2000, 320:1062-1066.
    3. Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, et al: Surfing the insulin signaling web. Eur J Clin Invest 2001, 31:966-977.
    4. Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414:799-806.
    5. Shepherd PR, Nave BT, Siddle K: Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J 1995, 305 ( Pt 1):25-28.
    6. Pons S, Asano T, Glasheen E, Miralpeix M, Zhang Y, Fisher TL, Myers MG, Jr., Sun XJ, White MF: The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol Cell Biol 1995, 15:4453-4465.
    7. Fruman DA, Cantley LC, Carpenter CL: Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 alpha gene. Genomics 1996, 37:113-121.
    8. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991, 65:663-675.
    9. Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K, Pessin JE, Cuatrecasas P, Saltiel AR: Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 1995, 270:20801-20807.
    10. Miron M, Verdu J, Lachance PE, Birnbaum MJ, Lasko PF, Sonenberg N: The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nat Cell Biol 2001, 3:596-601.
    11. Ogawa W, Matozaki T, Kasuga M: Role of binding proteins to IRS-1 in insulin signalling. Mol Cell Biochem 1998, 182:13-22.
    12. Pessin JE, Saltiel AR: Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000, 106:165-169.
    13. Ribon V, Herrera R, Kay BK, Saltiel AR: A role for CAP, a novel, multifunctional Src homology 3 domain-containing protein in formation of actin stress fibers and focal adhesions. J Biol Chem 1998, 273:4073-4080.
    14. Hardie DG: Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003, 144:5179-5183.
    15. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, et al: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003, 31:162-168.
    16. Long YC, Zierath JR: AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006, 116:1776-1783.
    17. Carling D: The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 2004, 29:18-24.
    18. Hardie DG: AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 2007, 47:185-210.
    19. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005, 2:21-33.
    20. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA: The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 2005, 280:29060-29066.
    21. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2005, 2:9-19.
    22. Zarubin T, Han J: Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005, 15:11-18.
    23. Ono K, Han J: The p38 signal transduction pathway: activation and function. Cell Signal 2000, 12:1-13.
    24. Kim JH, Park JM, Kim EK, Lee JO, Lee SK, Jung JH, You GY, Park SH, Suh PG, Kim HS: Curcumin stimulates glucose uptake through AMPK-p38 MAPK pathways in L6 myotube cells. J Cell Physiol 2010, 223:771-778.
    25. Liu Z, Cao W: p38 mitogen-activated protein kinase: a critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 2009, 9:38-46.
    26. Lemieux K, Konrad D, Klip A, Marette A: The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases alpha and beta in skeletal muscle. FASEB J 2003, 17:1658-1665.
    27. Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ: Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 2000, 49:527-531.
    28. Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D: Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem 1999, 274:23570-23576.
    29. Somwar R, Perreault M, Kapur S, Taha C, Sweeney G, Ramlal T, Kim DY, Keen J, Cote CH, Klip A, Marette A: Activation of p38 mitogen-activated protein kinase alpha and beta by insulin and contraction in rat skeletal muscle: potential role in the stimulation of glucose transport. Diabetes 2000, 49:1794-1800.
    30. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, et al: International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006, 58:726-741.
    31. Diradourian C, Girard J, Pegorier JP: Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 2005, 87:33-38.
    32. Jing L, Li WM, Zhou LJ, Yang BF: [Peroxisome proliferator-activated receptor alpha and retinoid X receptor alpha expressions and intervention in alcoholic cardiomyopathy rats]. Zhonghua Xin Xue Guan Bing Za Zhi 2009, 37:324-329.
    33. Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B: Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001, 142:4195-4202.
    34. Staels B, Fruchart JC: Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 2005, 54:2460-2470.
    35. Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, et al: Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 1999, 274:6718-6725.
    36. Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA: Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002, 87:2784-2791.
    37. Shulman GI: Cellular mechanisms of insulin resistance. J Clin Invest 2000, 106:171-176.
    38. Itani SI, Ruderman NB, Schmieder F, Boden G: Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002, 51:2005-2011.
    39. Guan Y, Breyer MD: Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int 2001, 60:14-30.
    40. Auwerx J: PPAR gamma, the ultimate thrifty gene. Diabetologia 1999, 42:1033-1049.
    41. Voutsadakis IA: Peroxisome proliferator-activated receptor gamma (PPARgamma) and colorectal carcinogenesis. J Cancer Res Clin Oncol 2007, 133:917-928.
    42. Liang HJ, Suk FM, Wang CK, Hung LF, Liu DZ, Chen NQ, Chen YC, Chang CC, Liang YC: Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem Biol Interact 2009, 181:309-315.
    43. Lloyd PG, Hardin CD, Sturek M: Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiol Res 1999, 48:401-410.
    44. Fukushima M, Hattori Y, Tsukada H, Koga K, Kajiwara E, Kawano K, Kobayashi T, Kamata K, Maitani Y: Adiponectin gene therapy of streptozotocin-induced diabetic mice using hydrodynamic injection. J Gene Med 2007, 9:976-985.
    45. Ito M, Kondo Y, Nakatani A, Naruse A: New model of progressive non-insulin-dependent diabetes mellitus in mice induced by streptozotocin. Biol Pharm Bull 1999, 22:988-989.
    46. Ito M, Kondo Y, Nakatani A, Hayashi K, Naruse A: Characterization of low dose streptozotocin-induced progressive diabetes in mice. Environ Toxicol Pharmacol 2001, 9:71-78.
    47. Hayashi K, Kojima R, Ito M: Strain differences in the diabetogenic activity of streptozotocin in mice. Biol Pharm Bull 2006, 29:1110-1119.
    48. Ko FN, Wu TS, Liou MJ, Huang TF, Teng CM: Vasorelaxation of rat thoracic aorta caused by osthole isolated from Angelica pubescens. Eur J Pharmacol 1992, 219:29-34.
    49. Chou SY, Hsu CS, Wang KT, Wang MC, Wang CC: Antitumor effects of Osthol from Cnidium monnieri: an in vitro and in vivo study. Phytother Res 2007, 21:226-230.
    50. Chen ZC, Duan XB, Liu KR: [The anti-allergic activity of osthol extracted from the fruits of Cnidium monnieri (L.) Cusson]. Yao Xue Xue Bao 1988, 23:96-99.
    51. Matsuda H, Tomohiro N, Ido Y, Kubo M: Anti-allergic effects of cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol Pharm Bull 2002, 25:809-812.
    52. Chen YF, Tsai HY, Wu TS: Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med 1995, 61:2-8.
    53. Liu J, Zhang W, Zhou L, Wang X, Lian Q: Anti-inflammatory effect and mechanism of osthole in rats. Zhong Yao Cai 2005, 28:1002-1006.
    54. Ogawa H, Sasai N, Kamisako T, Baba K: Effects of osthol on blood pressure and lipid metabolism in stroke-prone spontaneously hypertensive rats. J Ethnopharmacol 2007, 112:26-31.
    55. Zhang Y, Xie ML, Zhu LJ, Gu ZL: Therapeutic effect of osthole on hyperlipidemic fatty liver in rats. Acta Pharmacol Sin 2007, 28:398-403.
    56. Song F, Xie ML, Zhu LJ, Zhang KP, Xue J, Gu ZL: Experimental study of osthole on treatment of hyperlipidemic and alcoholic fatty liver in animals. World J Gastroenterol 2006, 12:4359-4363.
    57. Li XX, Hara I, Matsumiya T: Effects of osthole on postmenopausal osteoporosis using ovariectomized rats; comparison to the effects of estradiol. Biol Pharm Bull 2002, 25:738-742.
    58. Kuo PL, Hsu YL, Chang CH, Chang JK: Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells. J Pharmacol Exp Ther 2005, 314:1290-1299.
    59. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC: Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998, 98:2088-2093.
    60. Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999, 20:649-688.
    61. Ito Y, Obara K, Ikeda R, Ishii M, Tanabe Y, Ishikawa T, Nakayama K: Passive stretching produces Akt- and MAPK-dependent augmentations of GLUT4 translocation and glucose uptake in skeletal muscles of mice. Pflugers Arch 2006, 451:803-813.
    62. Jaswal JS, Gandhi M, Finegan BA, Dyck JR, Clanachan AS: Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am J Physiol Heart Circ Physiol 2007, 293:H1107-1114.
    63. Jensen TE, Rose AJ, Jorgensen SB, Brandt N, Schjerling P, Wojtaszewski JF, Richter EA: Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab 2007, 292:E1308-1317.
    64. Higaki Y, Mikami T, Fujii N, Hirshman MF, Koyama K, Seino T, Tanaka K, Goodyear LJ: Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol Endocrinol Metab 2008, 294:E889-897.
    65. Pelletier A, Joly E, Prentki M, Coderre L: Adenosine 5'-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes. Endocrinology 2005, 146:2285-2294.
    66. Kim JH, Lee JO, Lee SK, Jung JH, You GY, Park SH, Park M, Kim SD, Kim HS: Clozapine activates AMP-activated protein kinase (AMPK) in C2C12 myotube cells and stimulates glucose uptake. Life Sci 2010, 87:42-48.
    67. Liu SH, Chang YH, Chiang MT: Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. J Agric Food Chem 2010, 58:5795-5800.
    68. Breen DM, Sanli T, Giacca A, Tsiani E: Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun 2008, 374:117-122.
    69. Han SM, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW, Park JY, Lee KU, Kim MS: Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 2005, 48:2170-2178.
    70. Kramer DK, Al-Khalili L, Perrini S, Skogsberg J, Wretenberg P, Kannisto K, Wallberg-Henriksson H, Ehrenborg E, Zierath JR, Krook A: Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor delta. Diabetes 2005, 54:1157-1163.
    71. McGee SL, Hargreaves M: Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 2004, 53:1208-1214.
    72. McGee SL, Hargreaves M: Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms. Clin Exp Pharmacol Physiol 2006, 33:395-399.
    73. Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T, Klip A: The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes 2001, 50:1464-1471.
    74. Somwar R, Kim DY, Sweeney G, Huang C, Niu W, Lador C, Ramlal T, Klip A: GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J 2001, 359:639-649.
    75. Wang YQ, Yao MH: Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem 2009, 20:982-991.
    76. Purintrapiban J, Keawpradub N, Kansenalak S, Chittrakarn S, Janchawee B, Sawangjaroen K: Study on glucose transport in muscle cells by extracts from Mitragyna speciosa (Korth) and mitragynine. Nat Prod Res 2008:1-9.
    77. Lee MS, Hwang JT, Kim SH, Yoon S, Kim MS, Yang HJ, Kwon DY: Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol 2010, 127:771-776.
    78. Cheng Z, Pang T, Gu M, Gao AH, Xie CM, Li JY, Nan FJ, Li J: Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta 2006, 1760:1682-1689.
    79. Jung KH, Ha E, Kim MJ, Uhm YK, Kim HK, Hong SJ, Chung JH, Yim SV: Ganoderma lucidum extract stimulates glucose uptake in L6 rat skeletal muscle cells. Acta Biochim Pol 2006, 53:597-601.
    80. Fogarty S, Hardie DG: Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 2010, 1804:581-591.
    81. Luo Z, Zang M, Guo W: AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 2010, 6:457-470.
    82. Zadra G, Priolo C, Patnaik A, Loda M: New strategies in prostate cancer: targeting lipogenic pathways and the energy sensor AMPK. Clin Cancer Res 2010, 16:3322-3328.
    83. Hadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G, Kellock D, Jordan LB, Purdie CA, Hardie DG, et al: Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 2009, 9:307.
    84. Hutchinson DS, Summers RJ, Bengtsson T: Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: potential utility in treatment of diabetes and heart disease. Pharmacol Ther 2008, 119:291-310.
    85. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001, 108:1167-1174.
    86. Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F: Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 2010, 9:1092-1099.
    顯示於類別:[醫學科學研究所] 博碩士論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋