資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/33741
|
題名: | 腎素-血管張力素系統調控在高氧環境下膠原蛋白過度表現之機制探討 |
作者: | 藍耀東 |
貢獻者: | 醫學科學研究所 |
日期: | 2010 |
上傳時間: | 2010-08-31 10:57:16 (UTC+8) |
摘要: | 肺臟支氣管發育不全(bronchopulmonary dysplasia, BPD)是新生兒在出生時因呼吸困難所使用高濃度氧氣和正壓呼吸器後所產生的一種慢性肺臟疾病。BPD病人的肺泡發育遲緩,且肺纖維化程度增加,導致少年和青少年的罹病率和死亡率增加。研究發現新生鼠長期暴露於 hyperoxia 的環境中,也有肺泡生成和微血管發育受損及增加肺臟纖維化的現象,與BPD的病理特徵相似;因此推測hyperoxia為BPD的一個危險因子。雖然在新型BPD中,fibroproliferation並不明顯,但是hyperoxia仍會造成急性肺臟損傷和導致肺臟纖維化;然而,目前並無有效的方法治療BPD。因此,研究新型BPD產生的機制是很重要的。
腎素-血管收縮素系統(renin-angiotensin system, RAS)是調控血壓和體液恆定的一個關鍵因子。血管收縮素II (angiotensin II, Ang II)是RAS的主要調控分子,它是由血管收縮素原(angiotensiongen, AGT)被腎素(renin)及血管收縮素轉化酶(angiotensin I converting enzyme, ACE)作用而產生的。RAS除了可作用於全身組織外,也可以在局部器官產生而僅影響器官內的反應。例如,Ang II具有自體分泌(autocrine),對位分泌(paracrine)的生理活性進而改變肺臟器官內的細胞生理作用。文獻指出Ang II可引發肺臟纖維母細胞的增生及刺激其產生膠原蛋白;但是hyperoxia誘導肺纖維化的機制是否經由RAS的代謝途徑尚未釐清,而Ang II在Ang II是否可以做為治療 hyperoxia 所誘發肺纖維化的藥物標的物仍是未知的。
本論文利用人類胚胎肺臟纖維母細胞(MRC-5 cells)和新生鼠暴露在hyperoxia的環境下,研究RAS的代謝途徑與膠原蛋白的生合成間的關係。飼養新生鼠在大於95%的氧氣一週後,再暴露大於60%的氧氣二週。實驗結果顯示,hyperoxia 可顯著的增加新生鼠肺部總可溶性膠原蛋白量、第一型膠原蛋白和α-smooth muscle actin (α-SMA)的基因和蛋白表現。RAS中的各相關分子包括AGT、ACE和Ang II的生成也隨著hyperoxia刺激後而顯著增加。Hyperoxia也引發Ang II type I receptor (AT1R)的基因和蛋白表現卻沒有顯著改變AT2R的表現。進一步研究發現,若以AT1R small interfering RNA減少MRC-5 產生AT1R,可有效抑制hyperoxia所誘使的phosphorylated-ERK (p-ERK)、α-SMA和第一型膠原蛋白表現。此外,若細胞預先處理Ang II peptide、同時投與AT1R抑制劑losartan或AT2R抑制劑PD123319;我們觀察到無論在normoxia或是hyperoxia狀態下,Ang II總是增加p-ERK和α-SMA和第一型膠原蛋白表現,此種效果可被losartan抑制,但不受PD123319的影響。而在動物實驗結果顯示,相較於room air組,hyperoxia組中僅僅只有ERK的訊息傳遞被活化,而p38 mitogen-activated protein kinase (MAPK)和c-Jun N-terminal kinase (JNK)並沒有被影響。總結以上結果推論在MRC-5細胞和新生鼠中,hyperoxia誘發膠原蛋白生合成會經由RAS的活化,而ERK的磷酸化可能參與在RAS的訊息傳遞路徑中。
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that develops in newborn infants treated with oxygen and positive pressure ventilation for respiratory distress at birth. BPD is characterized by decreased alveolar and capillary development and increased fibrosis and is a major cause of morbidity and mortality throughout childhood and young adulthood. Prolonged exposure of neonatal mice to hyperoxia results in impaired alveolarization and capillary development and increases lung fibrosis that is very similar to human BPD. In addition, hyperoxia is identified as a risk factor that contributes to the development of BPD. Although fibroproliferation is less prominent in new BPD, hyperoxia still cause acute lung injury and lead to pulmonary fibrosis. However, no effective therapy is established for treatment of BPD. Therefore, it is important to explore new strategies for the BPD treatment.
The renin-angiotensin system (RAS) is a key regulator of blood pressure and fluid homeostasis. Angiotensin (Ang) II is main effector molecule of the RAS and is produced from the substrate angiotensinogen (AGT) through sequential enzymatic cleavages by renin and angiotensin I converting enzyme (ACE). The compartmentalized RAS may work within individual organ system with some degree of autonomy to influence regional response. In addition, Ang II may have autocrine and paracrine actions at the cellular level in the lung tissue. It has been reported that Ang II induces human lung fibroblast proliferation and stimulates collagen synthesis. However, the relationship of RAS in the pathogenesis of hyperoxia-induced lung fibrosis has not yet been established. In addition, the role of Ang II in the pathophysiology of hyperoxia-induced pulmonary fibrosis and the therapeutic potential for targeting Ang II in pulmonary fibrosis is still unclear.
The aims of this study were to investigate the effects of hyperoxia on the components of the RAS and collagen expression in human lung fibroblasts (MRC-5) as a cell model and in newborn rats as an animal model. Rat pups were exposed to 1 week of > 95% O2 and further 2 weeks of > 60% O2. Hyperoxia significantly increased total collagen, collagen type I, and α-smooth muscle actin (α-SMA) mRNA and protein expression in vitro and in vivo. RAS components including angiotensinogen (AGT), the ACE and Ang II production were also significantly upregulated after hyperoxic stimulus. Hyperoxia also induced Ang II type I receptor (AT1R) expression but did not alter AT2R expression in cell lines and rat lungs. Furthermore, silencing of AT1R signaling with small interfering RNA suppressed hyperoxia-induced the phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2, α-SMA, and collagen type I expression. Moreover, Ang II increased p-ERK 1/2 and collagen type I expression, and these increases were inhibited by the AT1R inhibitor, losartan, but not by the AT2R inhibitor, PD123319 under both normoxic and hyperoxic conditions in cells. Finally, the results demonstrated that only the ERK signaling pathway was activated by hyperoxic exposure, but p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) was not affected compared to room-air exposed rats. These data suggest hyperoxia induced lung collagen production via activation of the RAS in MRC-5 cells and in newborn rats, and ERK phosphorylation may be in involved in RAS activation. |
關聯: | 86頁 |
描述: | 頁數
中文摘要..…………………………………………………………………………..1~2
(Abstract in Chinese)
英文摘要..…………………………………………………………………………..3~5
(Abstract in English)
緒論………………………………………………………………………………...6-23
(Introduction)
研究材料與方法…………………………………………………………………24~33
(Materials and Methods)
實驗結果…………………………………………………………………………34~45
(Results)
討論………………………………………………………………………………46~53
(Discussion)
結論與展望………………………………………………………………………54~55
(Conclusion and Perspective)
參考文獻…………………………………………………………………………56~66
(References)
圖表………………………………………………………………………………67~86
(Tables and Figures)
附錄
論文發表(Publication)
Bailly, M., Ichetovkin, I., Grant, W., Zebda, N., Machesky, L.M., Segall, J.E., and Condeelis, J. (2001). The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr Biol 11, 620-625.
Baker, K.M., Chernin, M.I., Wixson, S.K., and Aceto, J.F. (1990). Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259, H324-332.
Baouz, S., Giron-Michel, J., Azzarone, B., Giuliani, M., Cagnoni, F., Olsson, S., Testi, R., Gabbiani, G., and Canonica, G.W. (2005). Lung myofibroblasts as targets of salmeterol and fluticasone propionate: inhibition of alpha-SMA and NF-kappaB. Int Immunol 17, 1473-1481.
Bellmeyer, A., Martino, J.M., Chandel, N.S., Scott Budinger, G.R., Dean, D.A., and Mutlu, G.M. (2007). Leptin resistance protects mice from hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 175, 587-594.
Bonikos, D.S., Bensch, K.G., Ludwin, S.K., and Northway, W.H., Jr. (1975). Oxygen toxicity in the newborn. The effect of prolonged 100 per cent O2 exposure on the lungs of newborn mice. Lab Invest 32, 619-635.
Booz, G.W. (2005). Putting the brakes on cardiac hypertrophy: exploiting the NO-cGMP counter-regulatory system. Hypertension 45, 341-346.
Bose, C.L., Dammann, C.E., and Laughon, M.M. (2008). Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal Ed 93, F455-461.
Bullock, G.R., Steyaert, I., Bilbe, G., Carey, R.M., Kips, J., De Paepe, B., Pauwels, R., Praet, M., Siragy, H.M., and de Gasparo, M. (2001). Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem Cell Biol 115, 117-124.
Burri, P.H. (1974). The postnatal growth of the rat lung. 3. Morphology. Anat Rec 180, 77-98.
Cairns, J.A., and Walls, A.F. (1997). Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest 99, 1313-1321.
Campbell, D.J., Kladis, A., and Valentijn, A.J. (1995). Effects of losartan on angiotensin and bradykinin peptides and angiotensin-converting enzyme. J Cardiovasc Pharmacol 26, 233-240.
Carnesecchi, S., Deffert, C., Pagano, A., Garrido-Urbani, S., Metrailler-Ruchonnet, I., Schappi, M., Donati, Y., Matthay, M.A., Krause, K.H., and Barazzone Argiroffo, C. (2009). NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. Am J Respir Crit Care Med 180, 972-981.
Cassis, L., Shenoy, U., Lipke, D., Baughn, J., Fettinger, M., and Gillespie, M. (1997). Lung angiotensin receptor binding characteristics during the development of monocrotaline-induced pulmonary hypertension. Biochem Pharmacol 54, 27-31.
Chapman, H.A. (2004). Disorders of lung matrix remodeling. J Clin Invest 113, 148-157.
Chen, C.M., Wang, L.F., Chou, H.C., Lang, Y.D., and Lai, Y.P. (2007). Up-regulation of connective tissue growth factor in hyperoxia-induced lung fibrosis. Pediatr Res 62, 128-133.
Cho, H.Y., and Kleeberger, S.R. (2007). Genetic mechanisms of susceptibility to oxidative lung injury in mice. Free Radic Biol Med 42, 433-445.
Chow, C.W., Herrera Abreu, M.T., Suzuki, T., and Downey, G.P. (2003). Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 29, 427-431.
Corda, S., Samuel, J.L., and Rappaport, L. (2000). Extracellular matrix and growth factors during heart growth. Heart Fail Rev 5, 119-130.
Crapo, J.D. (1986). Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol 48, 721-731.
Dasgupta, C., Sakurai, R., Wang, Y., Guo, P., Ambalavanan, N., Torday, J.S., and Rehan, V.K. (2009). hyperoxia-induced neonatal rat lung injury involves activation of TGF-β and Wnt signaling and is protected by rosiglitazone. Am J Physiol Lung Cell Mol Physiol 296, L1031-1041.
Dulin, N.O., Alexander, L.D., Harwalkar, S., Falck, J.R., and Douglas, J.G. (1998). Phospholipase A2-mediated activation of mitogen-activated protein kinase by angiotensin II. Proc Natl Acad Sci U S A 95, 8098-8102.
Dzau, V.J., Ellison, K.E., Brody, T., Ingelfinger, J., and Pratt, R.E. (1987). A comparative study of the distributions of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120, 2334-2338.
Filippatos, G., Tilak, M., Pinillos, H., and Uhal, B.D. (2001). Regulation of apoptosis by angiotensin II in the heart and lungs (Review). Int J Mol Med 7, 273-280.
Friess, W. (1998). Collagen--biomaterial for drug delivery. Eur J Pharm Biopharm 45, 113-136.
Goldstein, R.H. (1991). Control of type I collagen formation in the lung. Am J Physiol 261, L29-40.
Han, R.N., Buch, S., Tseu, I., Young, J., Christie, N.A., Frndova, H., Lye, S.J., Post, M., and Tanswell, A.K. (1996). Changes in structure, mechanics, and insulin-like growth factor-related gene expression in the lungs of newborn rats exposed to air or 60% oxygen. Pediatr Res 39, 921-929.
Hashimoto S., Gon, Y., Takeshita, I., Matsumoto, K., Maruoka, S., and Horie, T. (2001). Transforming Growth Factor-β1 Induces Phenotypic Modulation of Human Lung Fibroblasts to Myofibroblast Through a c-Jun-NH2-Terminal Kinase-Dependent Pathway. Am J Respir Crit Care Med 163, 152-157.
Henke, C., Marineili, W., Jessurun, J., Fox, J., Harms, D., Peterson, M., Chiang, L., and Doran, P. (1993). Macrophage production of basic fibroblast growth factor in the fibroproliferative disorder of alveolar fibrosis after lung injury. Am J Pathol 143, 1189-1199.
Hetzel, M., Bachem, M., Anders, D., Trischler, G., and Faehling, M. (2005). Different effects of growth factors on proliferation and matrix production of normal and fibrotic human lung fibroblasts. Lung 183, 225-237.
Hussain, N., Wu, F., Christian, C., and Kresch, M.J. (1997). hyperoxia inhibits fetal rat lung fibroblast proliferation and expression of procollagens. Am J Physiol 273, L726-732.
Jobe, A.H., and Bancalari, E. (2001). Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163, 1723-1729.
Karin, M., and Gallagher, E. (2009). TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 228, 225-240.
Kim, K.K., Kugler, M.C., Wolters, P.J., Robillard, L., Galvez, M.G., Brumwell, A.N., Sheppard, D., and Chapman, H.A. (2006). Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103, 13180-13185.
Kirk, J.M., Heard, B.E., Kerr, I., Turner-Warwick, M., and Laurent, G.J. (1984). Quantitation of types I and III collagen in biopsy lung samples from patients with cryptogenic fibrosing alveolitis. Coll Relat Res 4, 169-182.
Kramer, B.W. (2008). Antenatal inflammation and lung injury: prenatal origin of neonatal disease. J Perinatol 28 Suppl 1, S21-27.
Kuhn, C., and McDonald, J.A. (1991). The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 138, 1257-1265.
Kunugi, S., Fukuda, Y., Ishizaki, M., and Yamanaka, N. (2001). Role of MMP-2 in alveolar epithelial cell repair after bleomycin administration in rabbits. Lab Invest 81, 1309-1318.
Lemons, J.A., Bauer, C.R., Oh, W., Korones, S.B., Papile, L.A., Stoll, B.J., Verter, J., Temprosa, M., Wright, L.L., Ehrenkranz, R.A., et al. (2001). Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107, E1.
Leslie, K.O., Mitchell, J.J., Woodcock-Mitchell, J.L., and Low, R.B. (1990). Alpha smooth muscle actin expression in developing and adult human lung. Differentiation 44, 143-149.
Li, Z., Carter, J.D., Dailey, L.A., and Huang, Y.C. (2005). Pollutant particles produce vasoconstriction and enhance MAPK signaling via angiotensin type I receptor. Environ Health Perspect 113, 1009-1014.
Liebler, J.M., Qu, Z., Buckner, B., Powers, M.R., and Rosenbaum, J.T. (1998). Fibroproliferation and mast cells in the acute respiratory distress syndrome. Thorax 53, 823-829.
Manji, J.S., O'Kelly, C.J., Leung, W.I., and Olson, D.M. (2001). Timing of hyperoxic exposure during alveolarization influences damage mediated by leukotrienes. Am J Physiol Lung Cell Mol Physiol 281, L799-806.
Marshall, R.P., Gohlke, P., Chambers, R.C., Howell, D.C., Bottoms, S.E., Unger, T., McAnulty, R.J., and Laurent, G.J. (2004). Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol 286, L156-164.
Marshall, R.P., McAnulty, R.J., and Laurent, G.J. (2000). Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med 161, 1999-2004.
Merritt, T.A., Deming, D.D., and Boynton, B.R. (2009). The 'new' bronchopulmonary dysplasia: challenges and commentary. Semin Fetal Neonatal Med 14, 345-357.
Mohammadi-Karakani, A., Ghazi-Khansari, M., and Sotoudeh, M. (2006). Lisinopril ameliorates paraquat-induced lung fibrosis. Clin Chim Acta 367, 170-174.
Molina-Molina, M., Serrano-Mollar, A., Bulbena, O., Fernandez-Zabalegui, L., Closa, D., Marin-Arguedas, A., Torrego, A., Mullol, J., Picado, C., and Xaubet, A. (2006). Losartan attenuates bleomycin induced lung fibrosis by increasing prostaglandin E2 synthesis. Thorax 61, 604-610.
Molteni, A., Wolfe, L.F., Ward, W.F., Ts'ao, C.H., Molteni, L.B., Veno, P., Fish, B.L., Taylor, J.M., Quintanilla, N., Herndon, B., et al. (2007). Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Des 13, 1307-1316.
Niwa, K., Inanami, O., Ohta, T., Ito, S., Karino, T., and Kuwabara, M. (2001). p38 MAPK and Ca2+ contribute to hydrogen peroxide-induced increase of permeability in vascular endothelial cells but ERK does not. Free Radic Res 35, 519-527.
Northway, W.H., Jr., Moss, R.B., Carlisle, K.B., Parker, B.R., Popp, R.L., Pitlick, P.T., Eichler, I., Lamm, R.L., and Brown, B.W., Jr. (1990). Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 323, 1793-1799.
Otsuka, M., Takahashi, H., Shiratori, M., Chiba, H., and Abe, S. (2004). Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax 59, 31-38.
Parameswaran, K., Willems-Widyastuti, A., Alagappan, V.K., Radford, K., Kranenburg, A.R., and Sharma, H.S. (2006). Role of extracellular matrix and its regulators in human airway smooth muscle biology. Cell Biochem Biophys 44, 139-146.
Pendergrass, K.D., Gwathmey, T.M., Michalek, R.D., Grayson, J.M., and Chappell, M.C. (2009). The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus. Biochem Biophys Res Commun 384, 149-154.
Rehan, V., and Torday, J. (2003). hyperoxia augments pulmonary lipofibroblast-to-myofibroblast transdifferentiation. Cell Biochem Biophys 38, 239-250.
Reynolds, H.Y. (2005). Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the 1970s to 1980s. Am J Respir Crit Care Med 171, 98-102.
Scotton, C.J., and Chambers, R.C. (2007). Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132, 1311-1321.
Thannickal, V.J., Toews, G.B., White, E.S., Lynch, J.P., 3rd, and Martinez, F.J. (2004). Mechanisms of pulmonary fibrosis. Annu Rev Med 55, 395-417.
Tharaux, P.L., Chatziantoniou, C., Fakhouri, F., and Dussaule, J.C. (2000). Angiotensin II activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension 36, 330-336.
Thompson, M.D., Burnham, W.M., and Cole, D.E. (2005). The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 42, 311-392.
Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., and Brown, R.A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3, 349-363.
Tryka, A.F., Witschi, H., Gosslee, D.G., McArthur, A.H., and Clapp, N.K. (1986). Patterns of cell proliferation during recovery from oxygen injury. Species differences. Am Rev Respir Dis 133, 1055-1059.
Wang, T., Zhang, X., and Li, J.J. (2002). The role of NF-kappaB in the regulation of cell stress responses. Int Immunopharmacol 2, 1509-1520.
Wang, W., Huang, X.R., Canlas, E., Oka, K., Truong, L.D., Deng, C., Bhowmick, N.A., Ju, W., Bottinger, E.P., and Lan, H.Y. (2006). Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ Res 98, 1032-1039.
Ware, L.B., and Matthay, M.A. (2000). The acute respiratory distress syndrome. N Engl J Med 342, 1334-1349.
Warner, B.B., Stuart, L.A., Papes, R.A., and Wispe, J.R. (1998). Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol 275, L110-117.
Waseda, Y., Yasui, M., Nishizawa, Y., Inuzuka, K., Takato, H., Ichikawa, Y., Tagami, A., Fujimura, M., and Nakao, S. (2008). Angiotensin II type 2 receptor antagonist reduces bleomycin-induced pulmonary fibrosis in mice. Respir Res 9, 43.
Welty, S.E. (2001). Is there a role for antioxidant therapy in bronchopulmonary dysplasia? J Nutr 131, 947S-950S.
Yoshimura, S., Nishimura, Y., Nishiuma, T., Yamashita, T., Kobayashi, K., and Yokoyama, M. (2006). Overexpression of nitric oxide synthase by the endothelium attenuates bleomycin-induced lung fibrosis and impairs MMP-9/TIMP-1 balance. Respirology 11, 546-556.
Zhang, K., Rekhter, M.D., Gordon, D., and Phan, S.H. (1994). Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 145, 114-125. |
顯示於類別: | [醫學科學研究所] 博碩士論文
|
在TMUIR中所有的資料項目都受到原著作權保護.
|