数据加载中.....
|
jsp.display-item.identifier=請使用永久網址來引用或連結此文件:
http://libir.tmu.edu.tw/handle/987654321/33718
|
题名: | 低氧壓力促進類胰島素生長因子I訊息及活化多功能性小鼠精原幹細胞癌化之探討 |
作者: | 江勗良 |
贡献者: | 醫學科學研究所 |
日期: | 2010 |
上传时间: | 2010-08-31 10:39:41 (UTC+8) |
摘要: | 幹細胞是體內一群稀少且具有自我更新及分化能力的細胞,而幹細胞所在的微環境中,環境因子對其細胞分化或自我更新等的細胞命運具有決定性的影響,在腫瘤細胞中被認為存在著一群具有和幹細胞相似的特性並具有高度致腫瘤能力的癌幹細胞,其來源與起因並不清楚但目前認為其中一個途徑是透過微環境的逆境 (niche stress) 對細胞產生的壓力進而導致幹細胞癌化,在腫瘤中最常發生的微環境壓力就是低氧及發炎;然而環境因子對於幹細胞的調控是非常複雜的,透過我們所建立的無血清培養系統 (serum-free co-culture system) 發現了IGF-1/IGF-1R的訊息途徑可以調控精源幹細胞 (GSCs ) 對於幹細胞特性 (stemness) 的表現,在我們所建立的無血清環境中加入niche stress (5 % O2) 的條件發現GSCs會高度表現鹼性磷酸酶、幹細胞特性的基因表現上升 (Oct-4、c-Myc)。而且可以看到其細胞群落的大小也有明顯的增加,細胞增生的速度也因為低氧的刺激而增加。此外,在低氧環境下IGF-1和IGF-1R的表現量也都會增加。添加PPP (IGF-1R的抑制劑) 和 LY294002 (PI3K 的抑制劑) 到 AP+GSCs 培養液中,發現 Oct-4、HIF-1α 和 HIF-2α的蛋白表現量都會有顯著的下降,由這些結果我們推測在低氧環境下 HIFs 和 IGF-1 訊息途徑之間的交互作用可以幫助 GSCs 維持未分化的狀態。當我們 AP+GSC 培養在1 % O2 的環境下時可以看到其細胞遷移能力的上升,將培養在低氧環境的 AP+GSC 打入腎包膜中所形成的腫瘤也可以看到類似於 seminoma 的構造;而這些結果高度暗示著精源幹細胞的增生與癌化有可能是受到 IGF-1 訊息途徑與微環境因子之間的交互作用下所產生的影響。
Recent advances in cancer research suggest that there exist cancer stem cells (CSCs) in tumors. The resources of CSCs are still controversial; but the CSCs were originated from its stem cells have been hypothesized (like glioma CSCs and intestine CSCs). The niche stress such as hypoxia effect may provide external signals in stem cell transformation. However, mechanism in regulation of hypoxia-induced stem cell transformation still remains unclear. Our preliminary observations in human pluripotent testicular tumors (seminomas and embryonal carcinomas) showed a high expression level of hypoxia-inducible protein HIF-1α/HIF-2α as well as IGF protein in tissues. This observation strongly highlights the cross-talking of niche hypoxic stress and IGF-1 signaling in transformation of germline stem cells into pluripotent cancers. To address this point, we have successfully established a serum-free stem-niche cell co-culture system to generate pluripotent germline stem cells from neonatal mouse testis (AP+GSCs), and uncovered the role of IGF-1/IGF-1R signaling in germ cell pluripotency. Interestingly, while comparing with the normoxia (20 % O2), the AP+GSCs cells showed in a dramatically increase of alkaline phosphatase activity (AP), cell proliferation, HIF-1α, HIF-2α, Oct-4 protein expression, and pluripotent gene expression (such as Oct-4, Sox2, Nanog, Klf-4, and c-Myc) under hypoxia condition (5 % O2). Moreover, the IGF-1 and IGF-1R expression were also significantly increased under hypoxia. Further analysis by using PPP (a specific inhibitor of IGF-1R phosphorylation) and/or LY294002 (a specific PI3K inhibitor) treatment dramatically reduced the Oct-4 expression as well as HIF-1/HIF-2?峷rotein of AP+GSCs. These observations suggested the regulation of Oct-4/HIF-2α expression by IGF-1/IGF-1R signaling. In summary, our results demonstrated an up-stream regulation of stemness (Oct-4, Sox2, Nanog, and Klf-4) and tumor factor (c-Myc) by hypoxia which was cross-talking with IGF-1/IGF-1R signaling in stem cell transformation under hypoxia condition. |
關聯: | 71頁 |
描述: | 目錄 I
致謝 III
摘要 IV
ABSTRACT V
第一章 前言 1
1.1 幹細胞 (STEM CELL) 1
1.1.1 幹細胞的分類 2
1.2 精原幹細胞(GERMLINE STEM CELL, GSCS) 4
1.2.1 原生殖細胞 (primordial germ cells, PGCs) 4
1.2.2 精原母細胞 (gonocytes) 4
1.2.3 未分化精原細胞 (Spermatogonial stem cells, SSCs) 4
1.3 幹細胞與低氧微環境 6
1.4 精原幹細胞的微環境 7
1.4.2 低氧環境下精原幹細胞的基因表現 8
1.5 癌幹細胞(CANCER STEM CELL,CSCS) 2
1.6 氧氣濃度與癌幹細胞的關係 3
1.7 缺氧誘導蛋白 (HYPOXIA INDUCIBLE FACTOR, HIF) 4
1.7.1 HIFs的調控 5
1.8 研究動機 6
第二章 材料與方法 7
2.1 實驗動物 7
2.2 細胞培養 7
2.2.1小鼠睾丸組織精原幹細胞初級培養 (Primary culture) 7
2.2.2 培養小鼠精原幹細胞於低氧環境 (Hypoxia) 9
2.3 鹼性磷酸酶 (ALKALINE PHOSPHATASE, AP) 活性測定 10
2.3.1 以BCIP/ NBT來測定小鼠精原幹細胞的鹼性磷酸酶活性 10
2.3.2 以鹼性磷酸酶試劑組來測定小鼠精原幹細胞的鹼性磷酸酶活性 11
2.4 基因表現測定 12
2.4.1 RNA萃取 12
2.4.2 反轉錄聚合酶連鎖反應 (RT-PCR) 14
2.4.3 洋菜膠體電泳 (Agarose gel electrophoresis) 17
2.5 蛋白質表現測定 18
2.5.1 蛋白質萃取 18
2.5.2 SDS膠體電泳 (SDS-PAGE) 18
2.5.3 西方墨點法 (Western blotting) 20
2.5.4 Slot-blotting 22
2.6 小鼠精原幹細胞訊息傳遞路徑的相關調控 24
2.7 5-BROMODEOXY-URIDINE (BRDU) INCORPORATION 25
2.8 免疫細胞染色 26
2.9 免疫組織染色 (IMMUNOHISTOCHEMISTRY) 28
2.10 細胞遷移分析 30
第三章 實驗結果 32
3.1 胞外基質對精原幹細胞的影響 32
3.2 氧濃度對精原幹細胞生長及代謝的影響 32
3.3 低氧環境下精原幹細胞的基因表現 33
3.4 精原幹細胞在低氧環境下HIFS 與生長因子訊息傳遞與精原幹細胞之交互作用 34
3.5 低氧環境下對於精原幹細胞增生的影響 35
3.6 精原幹細胞在低氧環境下的遷移作用 35
3.7 低氧環境下對精原幹細胞的癌化作用 36
第四章 討論 37
4.1 無血清共同培養系統與精原幹細胞的關係 37
4.2 低氧環境下對精原幹細胞的影響 38
4.3 低氧環境與精原幹細胞的遷移作用 39
4.4 低氧環境與生長因子之間的交互作用 40
第五章 圖表 41
FIG.1 胞外基質 (ECM) 對於精原幹細胞生長與鹼性磷酸酶的影響 42
FIG. 2 氧濃度對精原幹細胞鹼性磷酸酶活性的影響 44
FIG. 3 氧濃度對精原幹細胞能量代謝的影響 46
FIG. 4 低氧環境下對精原幹細胞的影響 48
FIG.5 精原幹細胞在低氧環境下HIFS 與生長因子訊息傳遞與精原幹細胞之交互作用 50
FIG. 6 低氧環境下對於精原幹細胞細胞週期的影響 52
FIG. 7 精原幹細胞在低氧環境下的遷移作用 54
FIG. 8 低氧環境下對精原幹細胞的癌化作用 56
參考文獻 58
1. Fuchs E, Segre JA. Stem cells: a new lease on life. Cell. 100(1):143-155 (2000)
2. Scadden DT. The stem-cell niche as an entity of action. Nature. 441(7097):1075-1079 (2006)
3. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 414(6859):98-104 (2001)
4. Ulloa-Montoya F, Verfaillie CM, Hu WS. Culture systems for pluripotent stem cells. J Biosci Bioeng. 100(1):12-27 (2005)
5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 282(5391):1145-1147 (1998)
6. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 96(3):1162 (1999)
7. McLaren A. Primordial germ cells in the mouse. Dev Biol. 262(1):1-15 (2003)
8. Tam PP, Snow MH. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol. 64:133-147 (1981)
9. MacGregor GR, Zambrowicz BP, Soriano P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development. 121(5):1487-1496 (1995)
10. Ffrench-Constant C, Hollingsworth A, Heasman J, Wylie CC. Response to fibronectin of mouse primordial germ cells before, during and after migration. Development. 113(4):1365-1373 (1991)
11. Kanatsu-Shinohara M, Takehashi M, Takashima S, Lee J, Morimoto H, Chuma S, Raducanu A, Nakatsuji N, Fässler R, Shinohara T. Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell. 3(5):533-542 (2008)
12. Hedger MP. Testicular leukocytes: what are they doing? Rev Reprod. 2(1):38-47 (1997)
13. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 28(45):3949-3959 (2009)
14. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res. 67(3):1030-1037 (2007)
15. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 26(4):960-968 (2008)
16. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 187(3):345-355 (2001)
17. Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol. 19(2):106-111 (2009)
18. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 95(3): 379-391 (1998)
19. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell. 1(4): 403-415 (2007)
20. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, . HIF-2α regulates Oct4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20(5): 557-570 (2006)
21. Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 13(2):167-171 (2001)
22. Simon MC, . The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 9(4):285-296 (2008)
23. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 157(2): 411-421 (2000)
24. Osada R, Horiuchi A, Kikuchi N, Yoshida J, Hayashi A, Ota M, Katsuyama Y, Melillo G, Konishi I. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma. Hum Pathol. 38(9): 1310-1320 (2007)
25. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59(22):5830-5835 (1999)
26. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 22(20):7004-7014 (2002)
27. Arsham AM, Plas DR, Thompson CB, Simon MC. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem. 277(17):15162-15170 (2002)
28. Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Burgel T. Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett. 512(1-3):157-162 (2002)
29. Alvarez-Tejado M, Alfranca A, Aragones J, Vara A, Landazuri MO, del Peso L. Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem. 277(16):13508-13517 (2002)
30. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 160(1):1-40 (2006)
31. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 4(1):71-78 (2004)
32. Kristensen DM, Sonne SB, Ottesen AM, Perrett RM, Nielsen JE, Almstrup K, Skakkebaek NE, Leffers H, Meyts ER. Origin of pluripotent germ cell tumours: The role of microenvironment during embryonic development. Mol Cell Endocrinol. 288(1-2):111-118 (2008)
33. Gori S, Porrozzi S, Roila F, Gatta G, De Giorgi U, Marangolo M. Germ cell tumours of the testis. Crit Rev Oncol Hematol. 53(2):141-164 (2005)
34. Anderson R, Copeland TK, Schöler H, Heasman J, Wylie C. The onset of germ cell migration in the mouse embryo. Mech Dev. 91(1-2):61-68 (2000)
35. Molyneaux KA, Stallock J, Schaible K, Wylie C. Timelapse analysis of living mouse germ cell migration. Dev Biol. 240(2): 488-498 (2001)
36. Kanatsu-Shinohara M, Takehashi M, Takashima S, Lee J, Morimoto H, Chuma S, Raducanu A, Nakatsuji N, Fässler R, Shinohara T. Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 3(5): 533-542 (2008)
37. Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 9(4):285-296 (2008)
38. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest. 112(1): 126-135 (2003)
39. Harvey AJ, Kind KL, Pantaleon M, Armstrong DT, Thompson JG. Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod. 71(4): 1108-1119 (2004)
40. Jögi A, Øra I, Nilsson H, Lindeheim A, Makino Y, Poellinger L, Axelson H, Påhlman S. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci U S A. 99(10): 7021-7026 (2002)
41. Hansis C, Grifo JA, Krey LC. OCT4 expression in inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod. 6(11): 999–1004 (2000)
42. Clark AT, Rodriguez RT, Bodnar MS, Abeyta MJ, Cedars MI, Turek PJ, Firpo MT, Reijo Pera RA. Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells. 22(2): 169-179 (2004)
43. Boiani M, Eckardt S, Schöler HR, McLaughlin KJ. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16(10):1209-1219 (2002)
44. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20(5):557-570 (2006)
45. Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, Wu TJ, Wu YC, Hung YC, Chang CC, Ling TY. Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. FASEB J. 23(7):2076-2087 (2009)
46. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 104(13):5431-5436 (2007)
47. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 28(45):3949-3959 (2009)
48. Arsham AM, Plas DR, Thompson CB, Simon MC. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem. 277(17): 15162-15170 (2002)
49. Pietras A, Hansford LM, Johnsson AS, Bridges E, Sjölund J, Gisselsson D, Rehn M, Beckman S, Noguera R, Navarro S, Cammenga J, Fredlund E, Kaplan DR, Påhlman S. HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc Natl Acad Sci U S A. 106(39):16805-16810 (2009)
50. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3(10):721-732 (2003)
51. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 187(3):345-355 (2001)
52. Shetty G, Meistrich ML. The missing niche for spermatogonial stem cells: do blood vessels point the way? Cell Stem Cell. 1(4):361-363 (2007)
53. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl. 21(6):776-798 (2000)
54. Meistrich ML, van Beek MEAB. Separation of specific stages of spermatids from vitamin A-synchronized rat testes for assessment of nucleoprotein changes during spermiogenesis. Biol Reprod. Aug; 51 (2):334-44. (1994)
55. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3(7):730-737 (1997)
56. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB . Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18):5821-5828 (2003)
57. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100(7):3983-3988 (2003)
58. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445 (7123): 106-110 (2007)
59. Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 26(17):2862-2870 (2008)
60. Axelson H, Fredlund E, Ovenberger M, Landberg G, Påhlman S. Hypoxia-induced dedifferentiation of tumor cells--a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol. 16(4-5): 554-563 (2005)
61. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells. 26(7):1818-1830 (2008)
62. Platet N, Liu SY, Atifi ME, Oliver L, Vallette FM, Berger F, Wion D. Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett. 258(2):286-290 (2007)
63. Barnhart BC, Simon MC. Metastasis and stem cell pathways. Cancer Metastasis Rev. 26(2): 261-271 (2007)
64. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 129(3): 465-472 (2007)
65. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B. HIF-2alpha regulates Oct-4: Effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20(5): 557-570 (2006)
66. Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 4(5): 361-370 (2003)
67. Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23(9): 1949-1956 (2004)
68. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 11(4):335-347 (2007)
69. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 8(12): 976-990 (2008)
70. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126(4): 663-676 (2006)
71. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 1(1): 55-70 (2007)
72. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 102(13): 4783-4788 (2005)
73. Shibaji T, Nagao M, Ikeda N, Kanehiro H, Hisanaga M, Ko S, Fukumoto A, Nakajima Y. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 23(6C): 4721-4727 (2003)
74. Winter SC, Shah KA, Han C, Campo L, Turley H, Leek R, Corbridge RJ, Cox GJ, Harris AL. The relation between hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression with anemia and outcome in surgically treated head and neck cancer. Cancer. 107(4): 757-766 (2006)
75. Hui EP, Chan AT, Pezzella F, Turley H, To KF, Poon TC, Zee B, Mo F, Teo PM, Huang DP, Gatter KC, Johnson PJ, Harris AL. Coexpression of hypoxiainducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res. 8(8): 2595-2604 (2002)
76. Yoshimura H, Dhar DK, Kohno H, Kubota H, Fujii T, Ueda S, Kinugasa S, Tachibana M, Nagasue N. Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin Cancer Res. 10(24): 8554-8560 (2004)
77. Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G; Austrian Breast and Colorectal Cancer Study Group. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res. 8(6): 1831-1837 (2002)
78. Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res. 60(17): 4693-4696 (2000)
79. Yang QC, Zeng BF, Dong Y, Shi ZM, Jiang ZM, Huang J. Overexpression of hypoxia-inducible factor-1alpha in human osteosarcoma: correlation with clinicopathological parameters and survival outcome. Jpn J Clin Oncol. 37(2): 127-134 (2007)
80. Mizokami K, Kakeji Y, Oda S, Maehara Y. Relationship of hypoxia-inducible factor 1alpha and p21WAF1/CIP1 expression to cell apoptosis and clinical outcome in patients with gastric cancer. World J Surg Oncol. 4: 94 (2006)
81. Bangoura G, Liu ZS, Qian Q, Jiang CQ, Yang GF, Jing S. Prognostic significance of HIF- 2alpha/EPAS1 expression in hepatocellular carcinoma. World J Gastroenterol. 13(23): 3176-3182 (2007)
82. Theodoropoulos VE, Lazaris ACh, Sofras F, Gerzelis I, Tsoukala V, Ghikonti I, Manikas K, Kastriotis I. Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol. 46(2): 200-208 (2004)
83. Irie N, Matsuo T, Nagata I. Protocol of radiotherapy for glioblastoma according to the expression of HIF-1. Brain Tumor Pathol. 21(1): 1–6 (2004)
84. Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, Gatter KC, Harris AL. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 85(6): 881-890 (2001)
85. Vaupel P, Mayer A.. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26(2): 225-239 (2007)
86. Mabjeesh NJ, Willard MT, Frederickson CE, Zhong H, Simons JW. Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3'-kinase/protein kinase B in prostate cancer cells. Clin Cancer Res. 9(7): 2416– 2425 (2003)
87. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res. 60(17): 4873-4880 (2000)
88. Blancher C, Moore JW, Robertson N, Harris AL. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway. Cancer Res. 61(19): 7349-7355 (2001)
89. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem. 277(41): 38205-38211 (2002)
90. Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 63(9): 2330-2334 (2003)
91. Hellwig-Bürgel T, Stiehl DP, Wagner AE, Metzen E, Jelkmann W. Review: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res. 25(6): 297-310 (2005)
92. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 21(12): 3995-4004 (2001)
93. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60(6): 1541-1545 (2000)
94. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14(4): 391-396 (2000)
95. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL. Expression of hypoxia-inducible factor 1 in brain tumors: association with angiogenesis, invasion, and progression. Cancer. 88(1): 2606-2618 (2000)
96. Göbel U, Schneider DT, Calaminus G, Haas RJ, Schmidt P, Harms D. Germ-cell tumors in childhood and adolescence. GPOH MAKEI and the MAHO study groups. Ann Oncol. 11(3): 263-271 (2000)
97. Schneider DT, Schuster AE, Fritsch MK, Hu J, Olson T, Lauer S, Göbel U, Perlman EJ. Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors. Cancer Res. 61(19): 7268-7276 (2001)
98. Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol. 11(1): 37-49 (2010)
99. Buzzard JJ, Morrison JR, O'Bryan MK, Song Q, Wreford NG. Developmental expression of thyroid hormone receptors in the rat testis. Biol Reprod. 62(3): 664-669 (2000)
100. Ara T, Nakamura Y, Egawa T, Sugiyama T, Abe K, Kishimoto T, Matsui Y, Nagasawa T. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci U S A. 100(9): 5319-5323 (2003)
101. Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O'Brien W, Raz E, Littman D, Wylie C, Lehmann R. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development. 130(18): 4279-4286 (2003)
102. Di Carlo A, De Felici M. A role for E-cadherin in mouse primordial germ cell development. Dev Biol. 226(2): 209-219 (2000)
103. Mazure NM, Chen EY, Laderoute KR, Giaccia AJ. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood. 90 (9):3322-31. (1997)
104. Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J.17(17):5085-94 (1998) |
显示于类别: | [醫學科學研究所] 博碩士論文
|
在TMUIR中所有的数据项都受到原著作权保护.
|