Taipei Medical University Institutional Repository:Item 987654321/3112
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 45422/58598 (78%)
Visitors : 2559114      Online Users : 156
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://libir.tmu.edu.tw/handle/987654321/3112


    Title: Enhancement of Topical Small Interfering RNA Delivery and Expression by Low -Fluence Erbium: YAG Laser Pretreatment of skin
    Authors: 李婉若
    Lee WR;Shen SC;Zhuo RZ;Wang KC;Fang JY
    Contributors: 臨床醫學研究所
    Date: 2009
    Issue Date: 2009-08-21 16:58:27 (UTC+8)
    Abstract: RNA interference (RNAi) is rapidly becoming an important tool that is advancing research with therapeutic aims. It is necessary to develop efficient ways of guiding small interfering RNA (siRNA) to targeted tissues to induce an RNAi effect. Herein, we report on an active method for delivering macromolecular siRNA and its plasmid vector into the skin, using erbium:YAG (Er:YAG) laser pretreatment. The amount of siRNA transported through nude mouse skin was determined with an in vitro Franz diffusion assembly. Confocal laser scanning microscopy (CLSM) was used to examine the in vivo uptake of siRNA and the vector by the skin. The stratum corneum was partially ablated with the low-fluence laser. The results of in vitro experiments indicated a significant improvement in siRNA permeation with laser exposure, which showed a 2.4- to 10.2-fold increase compared with the nontreated group depending on the fluence used (1.2–1.7J/cm2). A photomechanical wave generated by filtering the laser irradiation was sufficient to enhance siRNA permeation by 5-fold. CLSM revealed intense green fluorescence from naked siRNA within the epidermis and upper dermis after laser pretreatment, producing a 3.5-fold enhancement compared with the control. The green signal intensity in 1.7J/cm2-treated skin was 4.2-fold higher than that in intact skin after the in vivo topical application of the siRNA expression vector. The increased signal was mainly in the dermis. This noninvasive, precisely controlled technique for siRNA therapy provides an efficient way to deliver siRNA and its vector into the skin.
    Relation: Huam gene therapy.(20):580-588.
    Data Type: article
    Appears in Collections:[Graduate Institute of Clinical Medicine] Periodical Article

    Files in This Item:

    File Description SizeFormat
    摘要34KbAdobe PDF187View/Open
    摘要.pdf36KbAdobe PDF146View/Open


    All items in TMUIR are protected by copyright, with all rights reserved.


    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員(libirtmu@gmail.com),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(libirtmu@gmail.com). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - Feedback