English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 45346/58522 (77%)
造訪人次 : 2503601      線上人數 : 207
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://libir.tmu.edu.tw/handle/987654321/11486


    題名: Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes
    作者: 徐國基
    Shyu KG;Ko WH;Yang WS;Wang BW;Kuan P
    貢獻者: 臨床醫學研究所
    日期: 2005
    上傳時間: 2009-10-21 09:32:52 (UTC+8)
    摘要: OBJECTIVES: Myostatin, a negative regulator of muscle growth, is increased in hypertrophied and infarcted heart. However, the mechanism of regulation is not known. Mechanical stress is an important regulatory factor for cardiomyocyte growth. The aim of the study was to investigate the effect of cyclic stretch on the expression of myostatin gene in cardiomyocytes.

    METHODS: Neonatal Wistar rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation at 60 cycles/min. An in vivo model of aorta-caval shunt in adult rats was used to investigate the myostatin expression.

    RESULTS: Cyclic stretch significantly increased myostatin protein and mRNA expression after 6 to 18 h of stretch. Addition of the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580, insulin-like growth factor-1 (IGF-1) monoclonal antibody, and p38 siRNA 30 min before stretch inhibited the induction of myostatin protein. Cyclic stretch increased, while SB203580, IGF-1, and IGF-1 receptor antibody abolished, the phosphorylated p38 protein. Gel shift assays showed significant increase of DNA-protein binding activity of myocyte enhancer factor 2 (MEF2) after stretch, and transfection with p38 siRNA abolished the DNA-protein binding activity induced by cyclic stretch. Cyclic stretch significantly increased the IGF-1 secretion from myocytes. Both conditioned media from stretched myocytes and exogenous administration of IGF-1 recombinant protein to the non-stretched myocytes increased myostatin protein expression similar to that seen after cyclic stretch. An in vivo model of aorta-caval shunt in adult rats also demonstrated the increased myostatin expression in the myocardium.

    CONCLUSIONS: Cyclic mechanical stretch enhances myostatin expression in cultured rat neonatal cardiomyocytes. The stretch-induced myostatin is mediated by IGF-1 at least in part through a p38 MAP kinase and MEF2 pathway.
    關聯: Cardiovasc Res.(68):405-414.
    資料類型: article
    顯示於類別:[臨床醫學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    15-5.pdf72KbAdobe PDF53檢視/開啟
    摘要.pdf167KbAdobe PDF71檢視/開啟


    在TMUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    著作權聲明 Copyright Notice
    • 本平台之數位內容為臺北醫學大學所收錄之機構典藏,包含體系內各式學術著作及學術產出。秉持開放取用的精神,提供使用者進行資料檢索、下載與取用,惟仍請適度、合理地於合法範圍內使用本平台之內容,以尊重著作權人之權益。商業上之利用,請先取得著作權人之授權。

      The digital content on this platform is part of the Taipei Medical University Institutional Repository, featuring various academic works and outputs from the institution. It offers free access to academic research and public education for non-commercial use. Please use the content appropriately and within legal boundaries to respect copyright owners' rights. For commercial use, please obtain prior authorization from the copyright owner.

    • 瀏覽或使用本平台,視同使用者已完全接受並瞭解聲明中所有規範、中華民國相關法規、一切國際網路規定及使用慣例,並不得為任何不法目的使用TMUIR。

      By utilising the platform, users are deemed to have fully accepted and understood all the regulations set out in the statement, relevant laws of the Republic of China, all international internet regulations, and usage conventions. Furthermore, users must not use TMUIR for any illegal purposes.

    • 本平台盡力防止侵害著作權人之權益。若發現本平台之數位內容有侵害著作權人權益情事者,煩請權利人通知本平台維護人員([email protected]),將立即採取移除該數位著作等補救措施。

      TMUIR is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff([email protected]). We will remove the work from the repository.

    Back to Top
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋