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Abstract. A new methodology that structures the semantics of a col-
lection of documents into the geometry of a simplicial complex is devel-
oped. A simplicial complex is topologically equivalent to a polyhedron
in Euclidean space. The semantics of documents are structured by the
geometry: A primitive concept is represented by a simplex. and a con-
cept is represented by a connected component. Based on these structures,
documents can be clustered into some meaningful classes. Experiments
with three different data sets from web pages and medical literature have
shown that our approach performs significantly better than traditional
clustering algorithms, such as k-means, AutoClass and Hierarchical Clus-
tering (HAC).

keyword clustering, association(rule)s, topology, simplicial complex, polyhe-
dron

1 Introduction

Clustering a given collection of documents has been a contemporary challenge.
There are many proposals; see Section 2. Almost all the known techniques are
based on some metrics in Euclidean geometry; these metrics are rather ad hoc,
and in general, do not reflect the semantic of the documents.

In this paper, we are proposing a novel approach, in which the semantics of a
collection of documents can be structured into a simplicial complex, and hence, a
polyhedron in Euclidean space without even using any metrics. It is well known
in functional analysis that a given finite dimensional Euclidean space has many
metrics, but only one unique topology. Briefly, though traditional approaches are
based on the various metric spaces, they have the same underlying topological
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spaces as our approach [42]. Our approach has utilize this unique topology in a
semantically meaningful way.

This paper is a continuation of previous work [29], in which we have con-
sidered a simpler problem, namely, clustering the documents by the maximal
PIMITIVE COMCEPTs. Here we explore the full notion. The results are very
encouraging; so the proposal seems promising.

1.1 Capture Semantics via Simplexes

We will illustrate the idea by examples [29]. Let ”wall” and ”street” be two
keywords that appear in a set of documents. These two keywords together often
denote some financial notions that have nothing to do with the two keywords
individually. A parallel situation also occurs in geometry. Let us regard the two
keywords as two abstract vertices, say v0 and v1. In combinatorial topology, such
two vertices determine an open segment that consists of linear points between
the two vertices exclusively. This open segment, called a 1-simplex, represents
one dimensional geometric object that does not include the two points, v0 and
v1.

By generalize such analogy to high dimensional spaces, we have the following
correspondence:

1. A set of vertices determine a new object, called a simplex; see Section ??

2. An association of keywords (e.g., ”Wall Street”) corresponds to a new notion
that represents the semantics (financial concept) of two keywords ”Wall” and
”Street.”

We would like to assert a delightful observation that the arpiori condition
is exactly the same as that of simplicial complex. This observation implies that
the keyword-association (frequent itemset) is an abstract simplicial complex in
combinatorial topology.

– So the semantics of simplicial complex of keywords impose a geometric struc-
ture into abstract space, called Latent Semantic Space (LSS), of human
thoughts that are hidden in the given documents.

1.2 An Overview of the Idea

What is a document? It is an ordered list of character strings that characterizes
a human thought. The list will be referred to as a linear text, and the character
string a term or a token. For a computer system, however, a document is merely
a linear text; it has no idea as to what a human thought is.

As we have pointed out that to handle such a large set of linear texts has
been a contemporary challenge, and many models have been proposed. However,
most of the solutions are based on some ad hoc Euclidean metrics that do not
reflect the semantics of the data. For example, the well known Latent Semantic
Index has no obvious connections with the semantics of the documents. The
index actually is related more to the ”distributions” of keywords.



So in this paper, we will introduce, based on the semantics of keywords, the
Euclidean topology to the semantics space without using any metrics. Here is
few important points of the idea

1. Each document in the given collection is associated automatically to a tuple
of keywords via the notion of TFIDF.

2. The totality of these keywords will be called the universal attributes in a
very precise sense of relational theory.

3. Based on HIGH TFIDF values a set of keyword-associations(roughly fre-
quent itemsets of length q) can be selected. The totality of such selected
keyword-associations forms an abstract simplicial complex, which is topo-
logically equivalent to a triangulation (linear simplicial complex) of a poly-
hedron in Euclidean space.

4. The polyhedron is topologically equivalent to the human thoughts that are
constraints by those keyword-associations in the documents. We will call
these human thoughts the Latent Semantic Space (LSS) of the collection. So
we have introduced the Euclidean topology into the semantic space of the
documents without using a metric.

Based on the topology of LSS, we propose the following conceptual structure:

1. A PRIMITIVE CONCEPT is represented by a simplex;

2. A maximal PRIMITIVE CONCEPT is represented by a maximal dimension
simplex; in [29], we called this one primitive concept.

3. A CONCEPT is represented by a connected component.

4. An IDEA is the whole polyhedron.

5. Based on these structures, documents can be clustered into some meaningful
classes:

(a) Clustering the documents by maximal A PRIMITIVE CONCEPTs.

(b) Clustering the documents by CONCEPTs.

(c) Clustering the documents hierarchically(an forest) by the set of CON-
CEPTs. 0-simplex is in the highest level, and 1-simplex is a sub-concept,
and so forth. For example, mathematics is a sub-concept of science if the
PRIMITIVE CONCEPT (represented by a simplex) of science is a face
of the PRIMITIVE CONCEPT of mathematics (represented by another
simplex).

In this paper, we are interested in those short documents, so the collection
of the returned web pagers by a Google search engine is the best example fro
our applicatons.

In what follows, we start by reviewing some related work on document clus-
tering in section 2. Section 3 introduces the mathematics of simplicial complex.
Section 4 constructs conceptually the abstract simplicial complex of keywords
And the corresponding topological space, called Latent Semantic Space. Section
5, we how the semantics are captured in the polyhedron. Section 6 shows some
experimental results from different data sets, followed by the conclusion.



2 Related Work

Document classification/clustering has been considered as one of the most crucial
techniques for dealing with the diverse and large amount of information present
on the World Wide Web. In particular, clustering is used to discover latent con-
cepts in a collection of Web documents, which is inherently useful in organizing,
summarizing, disambiguating, and searching through large document collections
[25].

Numerous document clustering methods have been proposed based on prob-
abilistic models, distance and similarity measures, or other techniques, such as
SOM. A document is often represented as a feature vector, which can be viewed
as a point in the multi-dimensional space. Many methods, including k-means,
support vector machines, hierarchical clustering and nearest-neighbor cluster-
ing, etc., select a set of key terms or phrases to organize the feature vectors
corresponding to different documents. Suffix-tree clustering [46], a phrase-based
approach, formed document clusters depending on the similarity between docu-
ments.

Hierarchical clustering algorithms have been proposed in an early paper by
Willett [45]. Cutting et al. introduced partition-based clustering algorithms for
document clustering [11]. Buckshot and fractionation were developed in [27].
Greedy heuristic methods are used in the hierarchical frequent term-based clus-
tering algorithm [4] to perform hierarchical document clustering by using fre-
quent itemsets. We should note here that frequent itemsets are also referred to
as associations(undirected association rules).

3 Background - Combinatorial Topology

This section is purely for reference purposes. Let us introduce and define some
basic notions in combinatorial topology. The central notion is n-simplex.

Definition 1. A n-simplex is a set of independent abstract vertices [v0, . . .,
vn+1]. A r-face of a n-simplex [v0, . . ., vn+1] is a r-simplex [vj0 ,. . .,vjr+1

] whose
vertices are a subset of { v0, . . . , vn+1 } with cardinality r + 1.

Geometrically 0-simplex is a vertex; 1-simplex is an open segment (v0, v1)
that does not include its end points; 2-simplex is an open triangle (v0, v1, v2)
that does not include its edges and vertices; 3-simplex is an open tetrahedron
(v0, v1, v2, v3) that does not includes all the boundaries. Formally,

Definition 2. A simplicial complex C is a finite set of simplexes that satisfies
the following two conditions:

– Any set consisting of one vertex is a simplex.
– Any face of a simplex from a complex is also in this complex.

The vertices of the complex v0, v1, · · ·, vn is the union of all vertices of those
simplexes ([42], pp. 108).



If the maximal dimension of the constituting simplexes is n then the complex is
called n-complex.

Note that, any set of n+1 objects can be viewed as a set of abstract vertices,
to stress this abstractness, some times we refer to such a simplex a combinatorial
n-simplex. The corresponding notion of combinatorial n-complex can be defined
by (combinatorial) r-simplexes.

A (n, r)-skeleton (denoted by Sn
r ) of n-complex is a n-complex, in which all

k-simplexes(k ≤ r) have been removed. Two simplexes in a complex are said
to be directly connected if the intersection of them is a nonempty face. Two
simplexes in a complex are said to be connected if there is a finite sequence
of directly connected simplexes connecting them. For any non-empty two sim-
plexes A, B are said to be r-connected if there exits a sequence of k-simplexes
A = S0, S1, . . . , Sm = B such that Sj and Sj+1 has an h-common face for
j = 0, 1, 2, . . . ,m − 1; where r ≤ h ≤ k ≤ n.

The maximal r-connected subcomplex is called a r-connected component.
Note that a r-connected component implies there does not exist any r-connected
component that is the superset of it. A maximal r-connected sub-complexes of
n-complex is called r-connected component. A maximal r-connected component
of n-complex is called connected component, if r = 0.

Example 1 In Figure 1, we have a simplicial complex that consist of twelve vertices
that are organized in the forms of 3-complex, denoted by S3.

Fig. 1. A complex with twelve vertexes.

Let us enumerate every simplex of S3:

1. The maximal 3-simplex S(a, b, c, d), and

(a) Its four 2-simplex faces S(a, b, c), S(a, b, d), S(a, c, d), S(b, c, d), and

(b) Its six 1-simplex faces S(a, b), S(a, c), S(a, d), S(b, c), S(b, d), S(c, d),

2. The maximal 3-simplex S(w, x, y, z)

(a) Its four 2-simplex faces S(w, x, y), S(w, x, z), S(w, y, z), and S(x, y, z), and

(b) Its six 1-simplex faces S(w, x), S(w, y), S(w, z), S(x, y), S(x, z), S(y, z)



3. The maximal 2-simplexes lying ”between’ two 3-simplexes: S(a, c, h), S(c, h, e),
S(e, h, f), S(e, f, x), S(f, g, x), S(g, x, y) and

4. Some of their 1-simplex faces S(a, h), S(c, h), S(c, e), S(h, e), S(e, f), S(h, f),
S(e, x) S(f, x), S(f, g), S(g, x), S(g, y); non of them are maximal.

5. Their 0-simplex faces (certices) a, b, c, d, e, f , g, h, w, x, y, z

Let us consider the (3, 1)-skeleton S3

1 , which consists of all 3-simplexex, 2-simplexes
and 1-simplexes of S3.

1. The maximal 3-simplex S(a, b, c, d), and
(a) Its four 2-simplex faces S(a, b, c), S(a, b, d), S(a, c, d), S(b, c, d), and
(b) Its six 1-simplex faces S(a, b), S(a, c), S(a, d), S(b, c), S(b, d), S(c, d),

2. The maximal 3-simplex S(w, x, y, z)
(a) Its four 2-simplex faces S(w, x, y), S(w, x, z), S(w, y, z), and S(x, y, z), and
(b) Its six 1-simplex faces S(w, x), S(w, y), S(w, z), S(x, y), S(x, z), S(y, z)

3. The maximal 2-simplexes lying ”between’ two 3-simplexes: S(a, c, h), S(c, h, e),
S(e, h, f), S(e, f, x), S(f, g, x), S(g, x, y) and

4. Some of their 1-simplex faces S(a, h), S(c, h), S(c, e), S(h, e), S(e, f), S(h, f),
S(e, x) S(f, x), S(f, g), S(g, x), S(g, y); non of them are maximal.

5. No 0-simplex

Let us consider the (3, 2)-skeleton S3

2 , which consists of all 3-simplexex and 2-
simplexes of S3.

1. The maximal 3-simplex S(a, b, c, d), and
(a) Its four 2-simplex faces S(a, b, c), S(a, b, d), S(a, c, d), S(b, c, d), and
(b) No 1-simplex

2. The maximal 3-simplex S(w, x, y, z)
(a) Its four 2-simplex faces S(w, x, y), S(w, x, z), S(w, y, z), and S(x, y, z), and
(b) No 1-simplex faces

3. The maximal 2-simplexes lying ”between’ two 3-simplexes: S(a, c, h), S(c, h, e),
S(e, h, f), S(e, f, x), S(f, g, x), S(g, x, y) and

4. No 1-simplex faces.
5. No 0-simplex faces

Let us consider the (2, 1)-skeleton S2

1 , which consists of all 2-simplexex and 1-
simplexes of S3.

1. No maximal 3-simplex
(a) Four 2-simplex faces S(a, b, c), S(a, b, d), S(a, c, d), S(b, c, d), and
(b) Six 1-simplex faces S(a, b), S(a, c), S(a, d), S(b, c), S(b, d), S(c, d),

2. No maximal 3-simplex
(a) Four 2-simplex faces S(w, x, y), S(w, x, z), S(w, y, z), and S(x, y, z), and
(b) Six 1-simplex faces S(w, x), S(w, y), S(w, z), S(x, y), S(x, z), S(y, z)

3. The maximal 2-simplexes lying ”between’ two 3-simplexes: S(a, c, h), S(c, h, e),
S(e, h, f), S(e, f, x), S(f, g, x), S(g, x, y) and

4. Some of their 1-simplex faces S(a, h), S(c, h), S(c, e), S(h, e), S(e, f), S(h, f),
S(e, x) S(f, x), S(f, g), S(g, x), S(g, y); non of them are maximal.

5. No 0-simplex faces

Let us consider the (2, 2)-skeleton S2

2 , which consists of all 2-simplexex of S3.

1. No maximal 3-simplex



(a) Four 2-simplex faces S(a, b, c), S(a, b, d), S(a, c, d), S(b, c, d), and
(b) No 1-simplex

2. No maximal 3-simplex
(a) Four 2-simplex faces S(w, x, y), S(w, x, z), S(w, y, z), and S(x, y, z), and
(b) No 1-simplex

3. The maximal 2-simplexes lying ”between’ two 3-simplexes: S(a, c, h), S(c, h, e),
S(e, h, f), S(e, f, x), S(f, g, x), S(g, x, y) and

4. No 1-simplex
5. No 0-simplex faces

4 The Simplicial Geometry of Keywords

In this section, we will construct the abstract simplicial complex of keywords. For
simplicity, we will use keywords to mean keywords, key phrases, and key terms;
they include compound nouns. In [?], we have explained the idea in [43], how
one can use the labeled sets of keywords (given by human experts) to learn the
rules for document classifications. There, the keywords are selected by human
and uses only in the syntactic levels. For example, given a set of documents (in
English) and their Chinese translations, the strategy in there cannot identify the
translation without human help. On the other hand, if use the strategy offered
in this paper, the respective Chinese translations and their English original will
correspond to homeomorphic polyhedra. So we may conclude the two sets have
the same semantics(not implement here).

In this paper, we will automate the keywords selection (use TDITF) and
explore (use data mining techniques) the deeper semantics hidden in the inter-
actions among keywords.

4.1 Vertices, Keywords and TFIDF

We will use TFIDF [40] value as the weight of keywords in each document. A
word will be selected as a keyword if the TFIDF value of a keyword is large.
Roughly, TFIDF indexing is tf × idf indexing [40, 39], where tf denotes term
frequency that appears in the document and idf denotes inverse document fre-
quency where document frequency is the number of documents which contain
the term. Moffat and Zobel [35] pointed out that tf × idf function demonstrates:
(1) rare terms are no less important than frequent terms in according to their idf
values; (2) multiple appearances of a term in a document are no less important
than single appearances in according to their tf values. The tf × idf implies the
significance of a term in a document, which can be defined as follows.

We observed that the direction of key terms (including compound words)
is irrelevant information for the purpose of document clustering. So we ignore
the confidence and consider only the support. In other words, we consider the
structure of the undirected associations of key terms; we believe the set of key
terms that co-occur reflects the essential information, the rule directions of the
key terms are inessential, at least in the present stage of investigation. Let tA
and tB be two terms. The support is defined for a collection of documents as
follows.



Definition 3. Let Tr denote a collection of documents. The significance of a
term ti in a document dj in Tr is its TFIDF value calculated by the function
tfidf(ti,dj), which is equivalent to the value tf(ti,dj) × idf(ti,dj). It can be cal-
culated as

tfidf(ti,dj) = tf(ti,dj) log
|Tr|

|Tr(ti)|

where |Tr(ti)| denotes the number of documents in Tr in which ti occurs at least
once, and

tf(ti,dj) =







1 + log(N(ti, dj)) if N(ti, dj) > 0

0 otherwise

where N(ti, dj) denotes the frequency of terms ti occurs in document dj by count-
ing all its nonstop words.

To prevent the value of |Tr(ti)| to be zero, Laplace Adjustment is taken to add
an observed count.

Definition 4. The support of a keyword tA in a collection is:

support(tA,Tr) =
1

|Tr|

|Tr|
∑

i=0

tfidf(tA,dj)

where, |Tr(tA)| defines number of documents that contain term tA, and |Tr| de-
notes the number of documents in the collection.

Traditionally, TFIDF values are often organized into the following matrix
form: Let a document dj in Tr be represented as a vector Vj = < tfidf(t1,dj),
tfidf(t2,dj), · · ·, tfidf(tn,dj) > and therefore Tr be represented as a matrix Mr =
< V1, V2, · · ·, VI , · · · >T . Most previous works [12, 13, 15] proposed to finding
the association rules or partitioning the association rules into clusters [6] from
Mr.

However, these index values have no obvious connections with the semantics
of documents. So the clustering of the document based on these partitioning
or association rules are not very meaningful. In fact, these values are more like
distributions of keywords. So, we choose

Definition 5. Those terms ti in document dj as the keywords or the 0-simplexes,
if the TFIDF tfidf(ti,dj) is large.

4.2 Simplexes, co-Occurrences of Keywords and High TFIDF

In the last subsection, we have focuses on the 0 dimension, here We will explain
the higher dimension cases. Let us start with dimension one.



Definition 6. The significance of keyword-associations in a collection will be
defined in terms of 1-dimensional TFIDF of tA and term tB:

significance(tA, tB,Tr) =
1

|Tr|

|Tr|
∑

i=0

TFIDF1(tA, tB,di)

where

TFIDF1(tA, tB,di) = tf(tA, tB,di) log
|Tr|

|Tr(tA, tB)|

, |Tr(tA, tB)| defines number of documents contained both term tA and term tB,
and |Tr| denotes the number of documents in a collection.

The term frequency tf(tA, tB,di) of both term tA and tB can be calculated as
follows.

Definition 7.

tf(tA, tB,dj) =























1 + log(min{N(tA, dj), N(tB , dj)})
if N(tA, dj) > 0 and N(tB , dj) > 0

0
otherwise.

A minimal threshold θ is imposed to filter out the terms that their significance
values are small. It helps us to eliminate the most common terms in a collection
and the nonspecific terms in a document.

Next, we will define the support of co-occurrences keywords (keyword-association)
in a document collection. Let tA and tB be two terms. The support defined in
the document collection is as follows.

Definition 8. Support denotes to be the significance of associations of term tA
and term tB in a collection, that is,

Support(tA, tB) = significance(tA, tB,Tr)

Now, we will explain the q dimension cases.

Definition 9. The significance of keyword-associations in a collection will be
defined in terms of q-dimensional TFIDF of tA1

. . . tAq
:

significance(tA1
, . . . tAq

,Tr) =
1

|Tr|

|Tr|
∑

i=0

TFIDFq(tA1
, . . . tAq

,di)

where

TFIDFq(tA1
, . . . tAq

,di) = tf(tA1
, . . . tAq

,di) log
|Tr|

|Tr(tA1
, . . . tAq

)|

, |Tr(tA1
, . . . tAq

)| defines number of documents contained all terms tA1
, . . . tAq

and |Tr| denotes the number of documents in a collection.



The term frequency tf(tA1
, . . . tAq

,di) can be calculated as follows.

Definition 10.

tf(tA1
, . . . tAq

,dj) =























1 + log(min{N(tA1
, dj), . . . , N(tAq

, dj)})
if N(tA1

, dj) > 0 . . .N(tAq
, dj) > 0

0
otherwise.

Definition 11. Support denotes the significance of keyword-associations of terms,
tA1

, . . . tAq
, in a collection, that is,

Support(tA1
, . . . tAq

) = significance(tA1
, . . . tAq

,Tr)

4.3 Simplicial Complex of Keywords

It is obvious that the support evaluated by tfidfq, q = 1, 2 . . . satisfies the Apriori
condition. So we have the following

Proposition 1

Support(tA1
, . . . tAq

) =⇒ Support(tA1
, . . . tAj

, tA(j−1)
, . . . , tAq

), j = 1, . . . q

This proposition is equivalent to the conditions of simplicial complex; see Defi-
nition 2. So we have the following

Proposition 2 The set of all keywords-associations that meet the support con-
ditions forms an abstract simplicial complex of keywords.

Here is our belief and our hypothesis:

– An IDEA (in the forms of a simplicial complex) may consist of many CONCEPTs
(in the form of connected components) that are constructed by PRIMITIVE CON-
CEPTs (in the form of maximal simplexes).

– A simplex is said to be a maximal if no other simplex in the complex is a superset
of it. The geometric dimension represents the degree of preciseness or depth of the
semantics that are represented by keyword-associations.

Example 2 In Figure 1, we have an IDEA that consist of twelve attributes that are
organized in the forms of 3-complex, denoted by S3. S(a, b, c, d) and S(w, x, y, z) are
two maximal simplexes of the highest dimension 3. Let us consider the (3, 2)-skeleton
S3

2 , by removing all 0-simplexes and 1-simplexes from S3:

– CONCEPT1 composite of S(a, b, c, d) and its four faces (2-simplices): S(a, b, c),
S(a, b, d), S(a, c, d), and S(b, c, d);

– CONCEPT2 composite of S(a, c, h)
– CONCEPT3 composite of S(c, h, e)
– CONCEPT4 composite of S(e, h, f)
– CONCEPT5 composite of S(e, f, x)
– CONCEPT6 composite of S(f, g, x)



– CONCEPT7 composite of S(g, x, y)
– CONCEPT8 composite of S(w, x, y, z) and its four faces (2-simplices): S(w, x, y),

S(w, x, z), S(w, y, z), and S(x, y, z).

There are no common faces between any two simplexes, so S3

2 has eight connected com-
ponents. For S3

3 , it consists of two non-connected 3-simplexes that organized two CON-
CEPTs (CONCEPT1 and CONCEPT8), which are independent maximal connected
components.

A complex, connected component or simplex of a skeleton represent a more
technically refined IDEA, CONCEPT, PRIMITVE CONCEPT.

4.4 Concept Formulation

Based on a divide and conquer method, the algorithm recursively partitions the
generated simplicial complex into two parts: one contains a specific simplex and
the other does not contain such a simplex.

– Algorithm CONCEPT PARITION(C, S)
• If C or S is empty, then return.
• Find out a simplex H connected to C that has the maximum degree in S and

Support(H ∪ C) is bigger than the given minimal support.1

• Let K ← C ∪H.
• If X be the set of simplices that each simplex in X has an common face in

C ∪H; X ∩ (C ∪H) 6= φ then call CONCEPT PARITION(K, X).
• Let U = S −X and call CONCEPT PARITION(C, X).
• The skeleton Sn

m
← Sn

m
∪K where m = |H ∪ C| and n ≥ m.

Fig. 2. The algorithm to find connected components in a simplical complex.

In the algorithm 2, we define the simplicial difference between two simplices
as follows.

Definition 12. Let S1 and S2 be two simplices. The simplicial difference be-
tween two simplices S1 and S2 is a simplex S = S1 − S2 that contains simplex
S1 but erases simplex S2 and all its faces.

Hierarchical clustering performs on grouping the data based on the similar
concepts among them. Unlike the conventional hierarchical clustering, the most
latent semantics, i.e., those data have a concrete concept, is on the top of the
hierarchy not at the bottom. Therefore, a hierarchical partition clustering is nat-
urally from (n, 0)-skeleton to (n,m)-skeleton (m ≥ 0 and m ≤ n). Each simplex
in a skeleton represents an individual cluster at each skeleton. According to the
connected components within each skeleton, some data are softly clustering into
a lot of categories associated to their common faces. A common face identifies a
common concept in a context.



A novel algorithm to formulate the hierarchical concepts from a set of high
dimensional data is presented in this paper. Based on the generated concepts
data can be hierarchically partitioned into distinct but overlapped clusters.

5 The Simplicial Geometry of Keywords

In this section, we will construct the abstract simplicial complex of keywords. For
simplicity, we will use keywords to mean keywords, key phrases, and key terms;
they include compound nouns. In [?], we have explained the idea in [?], how
one can use the labeled sets of keywords (given by human experts) to learn the
rules for document classifications. There, the keywords are selected by human
and uses only in the syntactic levels. For example, given a set of documents (in
English) and their Chinese translations, the strategy in there cannot identify the
translation without human help. On the other hand, if use the strategy offered
in this paper, the respective Chinese translations and their English original will
correspond to homeomorphic polyhedra. So we may conclude the two sets have
the same semantics(not implement here).

In this paper, we will automate the keywords selection (use TDITF) and
explore (use data mining techniques) the deeper semantics hidden in the inter-
actions among keywords.

5.1 Vertices, Keywords and TFIDF

We will use TFIDF [40] value as the weight of keywords in each document. A
word will be selected as a keyword if the TFIDF value of a keyword is large.
Roughly, TFIDF indexing is tf × idf indexing [40, 39], where tf denotes term
frequency that appears in the document and idf denotes inverse document fre-
quency where document frequency is the number of documents which contain
the term. Moffat and Zobel [35] pointed out that tf × idf function demonstrates:
(1) rare terms are no less important than frequent terms in according to their idf
values; (2) multiple appearances of a term in a document are no less important
than single appearances in according to their tf values. The tf × idf implies the
significance of a term in a document, which can be defined as follows.

We observed that the direction of key terms (including compound words)
is irrelevant information for the purpose of document clustering. So we ignore
the confidence and consider only the support. In other words, we consider the
structure of the undirected associations of key terms; we believe the set of key
terms that co-occur reflects the essential information, the rule directions of the
key terms are inessential, at least in the present stage of investigation. Let tA
and tB be two terms. The support is defined for a collection of documents as
follows.

Definition 13. Let Tr denote a collection of documents. The significance of a
term ti in a document dj in Tr is its TFIDF value calculated by the function



tfidf(ti,dj), which is equivalent to the value tf(ti,dj) × idf(ti,dj). It can be cal-
culated as

tfidf(ti,dj) = tf(ti,dj) log
|Tr|

|Tr(ti)|

where |Tr(ti)| denotes the number of documents in Tr in which ti occurs at least
once, and

tf(ti,dj) =







1 + log(N(ti, dj)) if N(ti, dj) > 0

0 otherwise

where N(ti, dj) denotes the frequency of terms ti occurs in document dj by count-
ing all its nonstop words.

To prevent the value of |Tr(ti)| to be zero, Laplace Adjustment is taken to add
an observed count.

Definition 14. The support of a keyword tA in a collection is:

support(tA,Tr) =
1

|Tr|

|Tr|
∑

i=0

tfidf(tA,dj)

where, |Tr(tA)| defines number of documents that contain term tA, and |Tr| de-
notes the number of documents in the collection.

Traditionally, TFIDF values are often organized into the following matrix
form: Let a document dj in Tr be represented as a vector Vj = < tfidf(t1,dj),
tfidf(t2,dj), · · ·, tfidf(tn,dj) > and therefore Tr be represented as a matrix Mr =
< V1, V2, · · ·, VI , · · · >T . Most previous works [12, 13, 15] proposed to finding
the association rules or partitioning the association rules into clusters [6] from
Mr.

However, these index values have no obvious connections with the semantics
of documents. So the clustering of the document based on these partitioning
or association rules are not very meaningful. In fact, these values are more like
distributions of keywords. So, we choose

Definition 15. Those terms ti in document dj as the keywords or the 0-simplexes,
if the TFIDF tfidf(ti,dj) is large.

5.2 Simplexes, co-Occurrences of Keywords and High TFIDF

In the last subsection, we have focuses on the 0 dimension, here We will explain
the higher dimension cases. Let us start with dimension one.

Definition 16. The significance of keyword-associations in a collection will be
defined in terms of 1-dimensional TFIDF of tA and term tB:

significance(tA, tB,Tr) =
1

|Tr|

|Tr|
∑

i=0

TFIDF1(tA, tB,di)



where

TFIDF1(tA, tB,di) = tf(tA, tB,di) log
|Tr|

|Tr(tA, tB)|

, |Tr(tA, tB)| defines number of documents contained both term tA and term tB,
and |Tr| denotes the number of documents in a collection.

The term frequency tf(tA, tB,di) of both term tA and tB can be calculated as
follows.

Definition 17.

tf(tA, tB,dj) =























1 + log(min{N(tA, dj), N(tB , dj)})
if N(tA, dj) > 0 and N(tB , dj) > 0

0
otherwise.

A minimal threshold θ is imposed to filter out the terms that their significance
values are small. It helps us to eliminate the most common terms in a collection
and the nonspecific terms in a document.

Next, we will define the support of co-occurrences keywords (keyword-association)
in a document collection. Let tA and tB be two terms. The support defined in
the document collection is as follows.

Definition 18. Support denotes to be the significance of associations of term
tA and term tB in a collection, that is,

Support(tA, tB) = significance(tA, tB,Tr)

Now, we will explain the q dimension cases.

Definition 19. The significance of keyword-associations in a collection will be
defined in terms of q-dimensional TFIDF of tA1

. . . tAq
:

significance(tA1
, . . . tAq

,Tr) =
1

|Tr|

|Tr|
∑

i=0

TFIDFq(tA1
, . . . tAq

,di)

where

TFIDFq(tA1
, . . . tAq

,di) = tf(tA1
, . . . tAq

,di) log
|Tr|

|Tr(tA1
, . . . tAq

)|

, |Tr(tA1
, . . . tAq

)| defines number of documents contained all terms tA1
, . . . tAq

and |Tr| denotes the number of documents in a collection.

The term frequency tf(tA1
, . . . tAq

,di) can be calculated as follows.



Definition 20.

tf(tA1
, . . . tAq

,dj) =























1 + log(min{N(tA1
, dj), . . . , N(tAq

, dj)})
if N(tA1

, dj) > 0 . . .N(tAq
, dj) > 0

0
otherwise.

Definition 21. Support denotes the significance of keyword-associations of terms,
tA1

, . . . tAq
, in a collection, that is,

Support(tA1
, . . . tAq

) = significance(tA1
, . . . tAq

,Tr)

5.3 Simplicial Complex of Keywords

It is obvious that the support evaluated by tfidf satisfies the Apriori condition.

Example 3 Support denotes the significance of keyword-associations of terms,
tA1

, . . . tAq
, in a collection, that is,

Support(tA1
, . . . tAq

) = significance(tA1
, . . . tAq

,Tr)

In the last section, we have observed that a n + 1-association is an abstract
n-simplex, in fact, the set of all associations has more structures. In this section,
we will investigate the mathematical structures of feature-associations. A data
set may carry a set of distinct concepts. Each concept, we believe, is carried by
a connected component of the complex of feature-associations. Here is our belief
and our hypothesis:

– An IDEA (in the forms of a simplicial complex) may consist many CONCEPTs (in
the form of connected components) that are constructed by PRIMITIVE CON-
CEPTs (in the form of maximal simplexes).

– A simplex is said to be a maximal if no other simplex in the complex is a superset
of it. The geometric dimension represents the degree of preciseness or depth of the
semantics that are represented by keyword-associations.

Example 4 In Figure 1, we have an IDEA that consist of twelve attributes that are
organized in the forms of 3-complex, denoted by S3. S(a, b, c, d) and S(w, x, y, z) are
two maximal simplexes of the highest dimension 3. Let us consider the (3, 2)-skeleton
S3

2 , by removing all 0-simplexes and 1-simplexes from S3:

– CONCEPT1 composite of S(a, b, c, d) and its four faces (2-simplices): S(a, b, c),
S(a, b, d), S(a, c, d), and S(b, c, d);

– CONCEPT2 composite of S(a, c, h)
– CONCEPT3 composite of S(c, h, e)
– CONCEPT4 composite of S(e, h, f)
– CONCEPT5 composite of S(e, f, x)
– CONCEPT6 composite of S(f, g, x)
– CONCEPT7 composite of S(g, x, y)



– CONCEPT8 composite of S(w, x, y, z) and its four faces (2-simplices): S(w, x, y),
S(w, x, z), S(w, y, z), and S(x, y, z).

There are no common faces between any two simplexes, so S3

2 has eight connected com-
ponents. For S3

3 , it consists of two non-connected 3-simplexes that organized two CON-
CEPTs (CONCEPT1 and CONCEPT8), which are independent maximal connected
components.

A complex, connected component or simplex of a skeleton represent a more
technically refined IDEA, CONCEPT, PRIMITVE CONCEPT.

5.4 Concept Formulation

Based on a divide and conquer method, the algorithm recursively partitions the
generated simplicial complex into two parts: one contains a specific simplex and
the other does not contain such a simplex.

Hierarchical clustering performs on grouping the data based on the similar
concepts among them. Unlike the conventional hierarchical clustering, the most
latent semantics, i.e., those data have a concrete concept, is on the top of the
hierarchy not at the bottom. Therefore, a hierarchical partition clustering is nat-
urally from (n, 0)-skeleton to (n,m)-skeleton (m ≥ 0 and m ≤ n). Each simplex
in a skeleton represents an individual cluster at each skeleton. According to the
connected components within each skeleton, some data are softly clustering into
a lot of categories associated to their common faces. A common face identifies a
common concept in a context.

A novel algorithm to formulate the hierarchical concepts from a set of high
dimensional data is presented in this paper. Based on the generated concepts
data can be hierarchically partitioned into distinct but overlapped clusters.

6 Experimental Results

Two data sets are involved in making the validation and evaluating the perfor-
mance of our model and algorithm. Effectiveness is the important criterion for
the validity of clustering.

The first dataset is Web pages collected from Boley et al.[6]. 98 Web pages
in four broad categories: business and finance, electronic communication and
networking, labor and manufacturing are selected for the experiments. Each
category is also categorized into four subcategories. This data set has been used
to compare our algorithm, LSS, with three traditional vector-based clustering
methods, in which their similarity measures are distance-based, model-based, or
association rules, separately.

The second dataset is the “Reuters-21578, Distribution 1” collection consisted
of newswire articles. The articles are assigned into 135 so-called topics that are
in use to affirm the clustering results.

In order to extract features from documents, Wordnet 2.0 and other ontology,
such as MeSH, as our background knowledge are then chosen to select meaning



corpus as features. All ingredients of terms within a short distance in a document
are considered to be the co-occurred features and then use for generating a
concept.

While considering relevant documents to a search query, if the TFIDF value
of a term is large, then it will pull more weight than terms with lesser TFIDF
values. The TFIDF value of features denotes the significance, i.e., the support, of
the simplex [?]. If the TFIDF value of a simplex is lesser than a given minimum
support, that simplex will be stopped continuing to generate its super-simplex..
The recursive generating simplices are in use for futher hierarchically data clus-
tering.

The result of the algorithm, PDDP [6], is under consideration by all non-stop
words, that is, the F1 database in their paper, with 16 clusters. The result of our
algorithm, LSS, is under consideration by all non-stop words with the minimal
support, 15%. Four hierarchical layers with 23 clusters have been produced.
Removing the redundant, 19 separate clusters have extracted. According to some
topics categorized into the same topic may mention different CONCEPTs, such
as “computer manufacture” and “information manufacture”, we thought they
might belong to different clusters. However, in this experiment, we still follow
the original defined class.

Table 1. The first dataset is compared with four algorithms, LSS, PDDP, k-means
and AutoClass.

Method LSS PDDP k means AutoClass HCA

Precision 81.4% 65.6% 56.7% 34.2% 35%

Recall 76.2% 68.4% 34.9% 23.6% 22.5%

F1 measure 0.787 0.67 0.432 0.279 0.274

There are 674 clusters in 8 hierarchical layers generated in the Reuter data
set. Some terms indicated a generic category in Reuter classifications are not
designated the same category, so that the number of clusters is larger than the
number of Reuter’s categories. Considering the Oil topic in the Reuter data set,
it is a composite topic including ‘Vegetable Oil’, ‘Crude Oil’, and so on. There
are about 1215 Reuter news clustered into the “Oil” group, which there are 1156
documents exactly in the “Oil” topic. 95% documents can be correctly clustered
into “Oil.” Some misclassified documents in “Oil” are related to “Gas,” or “Fuel.”
Speaking strictly, those documents are able to say “correctly” classified. The
other misclassified 19 documents that are assigned to the Reuter CPI (Consumer
Price Index) topic describe the change of CPI is related to the change of oil prices.
The subcategory “Crude Oil” of the cluster contains 520 (44%) documents, in
which induces 88% precise rate by compared with the Reuter “Crude Oil” topic.



7 Conclusion

In order to perform clustering on high dimensional effectively and efficiently, we
propose a topology-based method to naturally transfer the data into a latent
semantic space. Several latent semantic patterns reveal connected components
among the latent semantic space. According to highly association terms of each
layered skeleton, the data can be hierarchically partitioned into several mean-
ingful clusters.

Polysemy, phrases and term dependency are the limitations of search tech-
nology [22]. A single term is not able to identify a latent concept in a document,
for instance, the term “Network” associated with the term “Computer”, “Traf-
fic”, or “Neural” denotes different concepts. To discriminate term associations
no doubt is concrete way to distinguish one category from the others. A group
of solid term associations can clearly identify a concept. The term-associations
(frequently co-occurring terms) of a given collection of Web pages, form a sim-
plicial complex. The complex can be decomposed into connected components at
various levels (in various levels of skeletons). We believe each such a connected
component properly identify a concept in a collection of Web pages.

Some terms with similar meaning, for example, “anticipate,” “believe,” “es-
timate,” “expect,” “intend,” “project”, could be separated into several indepen-
dent topics even with the other same sub-concepts. In our experiments, some
data of a single concept have been specified into redundant clusters. That makes
the number of clustering big. Thesauri and some other adaptive methods [?] are
going to provide a solution for it. It will be further considered to solve in the
future.

We can effectively discover such a simplicial complex and use them to cluster
the collection of Web pages. Based on our web site and our experiments, we find
that LSS is a very good way to organize the high dimensional data into several
semantic topics. It illustrates that geometric complexes are effective models for
automatic web pages clustering.
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