lpha -Naphthoflavone, a Potent Antiplatelet Flavonoid, Is Mediated through Inhibition of Phospholipase C Activity and Stimulation of Cyclic GMP Formation

陳增福

Hsiao G;Chang CY;Shen MY;CHou DS;Tzeng SH;Chen TF;Sheu

JR

摘要

Abstract

The aim of this study was to systematically examine the inhibitory mechanisms of the flavonoid α -naphthoflavone (α -NF) in platelet activation. In this study, α -NF concentration dependently (5-20 µM) inhibited platelet aggregation stimulated by agonists. α -NF (5 and 10 μ M) inhibited intracellular Ca2+ mobilization, phosphoinositide breakdown, and thromboxane A2 formation stimulated by collagen (1 µg/mL) in human platelets. In addition, α -NF (5 and 10 μ M) markedly increased levels of cyclic GMP and cyclic GMP-induced vasodilator-stimulated phosphoprotein (VASP) Ser157 phosphorylation. Rapid phosphorylation of a platelet protein of Mr 47 000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12,13-dibutyrate (60 nM). This phosphorylation was markedly inhibited by α -NF (5 and 10 μ M). However, α -NF (5 and 10 μM) did not reduce the electron spin resonance (ESR) signal intensity of hydroxyl radicals in collagen (1 µg/mL)-activated platelets. These results indicate that the antiplatelet activity of α -NF may be involved in the following pathways. (1) α -NF may inhibit the activation of phospholipase C, followed by inhibition of phosphoinositide breakdown, protein kinase C activation, and thromboxane A2 formation, thereby leading to inhibition of intracellular Ca2+ mobilization. (2) α -NF also activated the formation of cyclic GMP, resulting in inhibition of platelet aggregation. These results strongly indicate that α -NF appears to represent a novel and potent antiplatelet agent for treatment of arterial thromboembolism.