Liriodenine 類似物之化學合成研究

Synthesis of Liriodenine Analogs

中文摘要

Liriodenine 類似物之化學合成研究

Liriodenine(1) 是從 Liriodendron tulipifera L 之 heartwood 中分離出的 7-oxoaporphine 的生物鹼。最近的報告證實 liriodenine 爲一種很強 topoisomerase Ⅱ抑制劑,利用其平面的分子結構,如同 DNA 的崁入劑般發揮抗癌作用。此 外有一些體內的藥理研究報告證明 lirodenine 也有抗心律不整的作用。Liriodenine 經藥理活性篩選發現其對於 carbachol 誘發天竺鼠支氣管平滑肌之收縮具有鬆弛 作用,但對心臟強心作用之活性僅爲平滑肌鬆弛作用之十分之一而已。這些藥理 作用證實 liriodenine 也是屬於一選擇性的 M3 receptor 抑制劑,且其結構與其他 的選擇性的 M3 receptor 抑制劑(如,4-DAMP)有很大的不同。因此,本實驗室的 研究重點將著重於發展並找出新又簡易之合成 liriodenine 的方法,並嘗試去合成 更多與 liriodenine 結構類似的衍生物,以利於將來的新藥的研發。本實驗室之採 用兩種方法進行 liriodenine 的合成。方法一、二,皆是先利用 piperonal 及 aminoacetaldehyde dimethyl acetal 進行縮合反應後再運用 Pomeranz-Fritsch reaction 進行 isoquinoline 環化反應來製備 6,7-methylenedioxyisoquinoline (23),然 後再將23 與 benzoyl chloride 及 trimethylsilyl cyanide 去製備 isoquinoline reissert 化合物 24 。接下來,方法一則是將 24 與 2-bromobenzaldehyde 反應形成 benzylisoquinoline ester 27,經水解得到 16,與 tributyltin hydride 進行自由基分 子內的環化反應即可得到 liriodenine (產率 35%) 及一副產物 32 (產率 55%)。第 二種方法是將 24 與 2-bromobenzyl chloride 反應形成

1-bromobenzyl-6,7-methylene-

dioxyisoquinoline (34) 後再運用 Bu3SnH/AIBN 進行環化反應,所得之中間體沒有分離出來使直接經由空氣中自行氧化得到 liriodenine (產率 15%),從研究結果發現所採用的方法較文獻所述簡單,但 liriodenine 的總產率並無提高,又本化合物由方法一總產率較方法二微高。本研究也合成兩種 liriodenine 衍生物 38 及 39,係由化合物 1 分別與 hydroxylamine hydrochloride 及 hydrazine hydrate 反應而得(產率約 80%)。

英文摘要

Synthesis of Liriodenine Analogs

Liriodenine (1) , an 7-oxoaporphine alkaloid was isolated from the heartwood of Liriodendron tulipifera L \circ Recently , it was found that the nature product exhibited inhibitory activity against Topo II because of its planar molecule having DNA intercalation capability \circ The in vivo biological studies also know that liriodenine

possessed a prominent antiarrhythmic activity, antimicrobial action, antibacterial, antifungal activity, mutagenicity and antiplatelet actions. Tracheal contraction of guinea-pig induced by carbachol was inhibited by liriodenine • The cardiotonic effect of this agent was just only one tenth potency compared with smooth muscle relaxation effect • It demonstrated that liriodenine is a selective muscarinic M3 subtype receptor antagonist • Since the natural product is structurally different from the known M3 antagonist (e.g. 4-DAMP) • It is of great interest to develop a new and facile synthesis route for liriodenine, and its analogs as selective M3 antagonists • Two methods were applied for the synthesis of liriodenine • The natural product 1 was prepared by starting from the reaction of piperonal and aminoacetaldehyde dimethyl acetal to form 6,7-methylenedioxyisoquinoline 23 via Promeranz-Fritsch reaction in 4 steps · Compound 23 was then treated with benzoyl chloride · followed with trimethylsilyl cyanide to yield isoquinoline Reissert compound 24 in good yield • In Method 1: Compound 24 was reacted with 2-bromobenzaldehyde to form benzylisoquinoline ester 27, which was then hydrolyzed to afford 16. Treatment of compound 16 with tributyltin hydride followed with air autooxidation to give the desired product 1 together with by-product 32, Alternatively (method 2): compound 24 was reacted with 2-bromobenzyl chloride to give 1-bromobenzyl-6,7-methyleedioxyisoquinoline (34), which was further treated with Bu3SnH/AIBN and air autooxidation in one-pot reaction to afford liriodenine (1) in low yield • The present results showed that the overall yield of liriodenine by Method 1 was slightly higher than that by Method 2 • Two new analogues of liriodenine, compounds 38 and 39, were also prepared in high yield (80%) by the reaction of compound 1 with hydroxylamine hydrochloride and hydrazine hydrate, respectively •