Fig. 5. Effect of FeCl₃ on thiobarbituric acid-reactive substances (malondialdehyde, MDA) in primary rat hepatocytes isolated from rats fed an AIN-76 diet with or without 0.01% β -carotene. * Values with different superscripts in the same color bar significantly differ from one another at p<0.05 as determined by ANOVA and Duncan's multiple range test. a, b: β -carotene diet. A, B, C: β -carotene-free diet. ** The concentration of MDA significantly differ (p = 0.0001) between feeding the β - carotene and β -carotene-free diets. were incubated with 0.05 mM FeCl₃ or without FeCl₃. But GSH-Px activity was significantly increased in rats fed a β -carotene diet than a β -carotene-free diet when primary rat hepatocytes were incubated with 0.1 and 0.2 mM FeCl₃ for 60 min (p < 0.05) (Fig. 4). MDA concentrations of rats fed the β -carotene diet were significantly greater than those fed the β -carotene-free diet when primary rat hepatocytes were incubated with 0.05~0.2 mM FeCl₃ (p=0.0001) (Fig. 5). MDA concentrations of rats fed the β -carotene diet were also significantly greater than those fed the β -carotene-free diet when primary rat hepatocytes were incubated without FeCl₃. ## **DISCUSSION** The need to examine the extent and mechanisms of the prooxidant actions of β -carotene has resulted in an increasing number of in vitro studies. ¹⁸ In this present study, we measured the effect of FeCl₃ on cell integrity and lipid peroxidation in primary rat hepatocyes from rats fed an AIN-76 diet with or without β -carotene (Fig. 1). This study found that the LDH leakage percentage and MDA concentrations of cells from rats fed the β -carotene diet were significantly greater than those of rats fed the β -carotene-free diet when primary rat hepatocytes were incubated with 0.05~0.2 mM FeCl₃ (p=0.0001). The LDH leakage and MDA concentrations of rats fed the β -carotene diet were also significantly greater than those of rats fed the β -carotene-free diet when primary rat hepatocytes were incubated without FeCl₃. These results show that β -carotene is a prooxidant agent in this biological system. Many of the reported results have been demonstrated only in vitro and not in vivo. Moreover, the β -carotene products directly responsible for the prooxidant activity have not yet been identified. Previous studies indicated the prooxidant-antioxidant actions of β -carotene in vivo. Very little work has been directed at investigating the effects of β -carotene supplementation in vivo, which at the same time observing in vitro cell viability and the antioxidative system of primary rat hepatocytes. Hydroxyl radicals (•OH) formed by iron-catalyzed reactions and/or iron-oxygen species may initiate the lipid peroxidation process. In addition, iron can catalyze the breakdown of lipid peroxides into alkoxyl and peroxyl free radicals. Free radicals are chemical species with 1 or more unpaired electrons. Under normal physiological conditions, organisms can prevent free-radical damage by protective mechanism which in-