Fig. 3. Effect of FeCl₃ on catalase (CAT) activity in primary rat hepatocytes isolated from rats fed an AIN-76 diet with or without 0.01% β -carotene. * Values with different superscripts in the same color bar are significantly different from one another at p<0.05 as determined by ANOVA and Duncan's multiple range test. a, b, c: β -carotene diet. A, B, C: β -carotene-free diet. ** CAT activity significantly differs (p = 0.0001) between feeding the β -carotene and β -carotene-free diets. greater than that of cells from rats fed the β -carotene-free diet when primary rat hepatocytes were incubated without FeCl₃. The GSH-Px activity of cells from rats fed the β -carotene diet did not significantly differ from that of cells from rats fed the β -carotene-free diet when the primary rat hepatocytes were incubated with $0.05{\sim}0.2$ mM FeCl₃ for 30 min (p > 0.05) (Fig. 4). GSH-Px activity was also not affected by the presence or absence of β -carotene in the diet when primary rat hepatocytes Fig. 4. Effect of FeCl₃ on glutathione peroxidase (GSH-Px) activity in primary rat hepatocytes isolated from rats fed an AIN-76 diet with or without 0.01% β-carotene. * Values with different superscripts in the same color bar significantly differ from one another at p<0.05 as determined by ANOVA and Duncan's multiple range test. a, b, c: β -carotene diet. A, B, C, D: β -carotene-free diet. ** The GSH-PX activity dose not significantly differ (p > 0.05) between feeding the β -carotene and β -carotene-free diets.