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Endomorphin-1 (EM-1) and endomorphin-2 (EM-2) are endogenous ligands for p-opioid receptors. Both
EM-1 and EM-2, given supraspinally or spinally, produce potent antinociception (analgesia) in mice and
rats, measured by the thermal tail-flick response. The antinociception produced by either EM-1 or EM-2
is mediated by the stimulation of p-opioid receptors, but not by d- or k-opioid receptors. EM-1 or EM-2
given supraspinally stimulates primarily p-opioid receptors and subsequently releases spinipetal
noradrenaline and serotonin, acting on ap-adrenoceptors and serotonin receptors in the spinal cord for
producing antinociception. However, the antinociception produced by EM-2, but not by EM-1, also
contains an additional component, which is mediated by the release of dynorphin A;_17 and Met-
enkephalin acting on k-opioid receptors and d,-receptors, respectively, in the spinal cord for produc-
ing antinociception. Pretreatment with EM-1 or EM-2, given supraspinally or spinally, attenuates the
antinociception (antinociceptive tolerance) produced by EM-1 or EM-2, respectively. Pretreatment with
EM-2 attenuates the antinociception produced by EM-1; however, pretreatment with EM-1 does not
attenuate the antinociception produced by EM-2 (asymmetric cross-tolerance). The antinociception
produced by (—)-morphine given into the ventral periaqueductal gray is attenuated by pretreatment
with a subanalgesic dose of EM-1 or EM-2 given into the ventral periaqueductal gray in rats (anti-
analgesia). The antianalgesia produced by EM-2, but not by EM-1, is mediated by the release of dynor-
phin Ai_17 which antagonizes the analgesic response to (—)-morphine. EM-2, but not EM-1, given into
the centromedial amygdala decreases the tail-flick latencies (hyperalgesia) in rats. The hyperalgesia
induced by EM-2 from centromedial amygdala is mediated by the release of dynorphin A;_;7 acting on
N-methyl-D-aspartate receptors. It is therefore proposed that there are two separate subtypes of p-opioid
receptors: p and p'. The p-opioid receptors are stimulated by both EM-1 and EM-2, (—)-morphine, and
[D-Ala?,NMePhe* Gly’-ol]enkephalin, and blocked by D-Pro’-endomorphin-1. The p/-opioid receptors
are stimulated by EM-2 but not by EM-1, and blocked by D-Pro’-endomorphin-2, naloxonazine,
and 3-methoxynaltrexone. However, both subtypes of p-opioid receptors are commonly blocked by
B-funaltrexamine, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH>, and (—)-naloxone.

Copyright © 2014, Taipei Medical University. Published by Elsevier Taiwan LLC. All rights reserved.

1. Introduction

an endogenous ligand for k-opioid receptors.®° Although B-endor-
phin is an endogenous ligand for e-opioid receptors,'®'? it also

Since the initial demonstration of p-opioid receptors more than 35
years ago, investigators have searched for their endogenous ligands.
The search led to the discovery of enkephalins, endorphins, and
dynorphins in the 1970s'; yet they have either low selectivity
or low efficacy for the p-opioid receptors.®’ Enkephalins are
endogenous ligands for d-opioid receptors, and dynorphin A;_q7 is
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binds equally well to ji- and 3-opioid receptors with high affinity.'>
Thus, many investigators believe that these peptides are not the
endogenous ligands for p-opioid receptors due to their selectivity
profiles.

Later, two new peptides, endomorphin-1(EM-1, Tyr-Pro-Trp-Phe-
NH) and endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH), have been
isolated from mammalian brain and found to activate p-opioid re-
ceptors with high affinity and selectivity, raising the possibility that
they are two endogenous p-opioid receptor ligands.” In opioid re-
ceptor binding assays, both EM-1 and EM-2 compete with p-opioid
receptor sites potently.'4 Neither compound has appreciable affinities
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for d- and k-opioid receptors. Endomorphins (EMs) were found in the
brain and spinal cord regions, which are also rich in p-opioid
receptors.”'>~1° Both EM-1 and EM-2 also induce p-opioid receptor-
mediated G protein activation by increasing the binding of [3°S]
guanosine 5'-0O-(3-thio)triphosphate, which is selectively blocked by
the p-opioid receptor antagonists f-funaltrexamine and D-Phe-Cys-
Tyr-D-Trp-Orn-Thr-Pen-Thr-NH, (CTOP), but not by 3-opioid receptor
antagonist naltrindole or k-opioid receptor antagonist norbinaltor-
phimine.?®?! In addition, neither EM-1 nor EM-2 induces any G
protein activation in the membrane preparation obtained from
p-opioid receptor clone (MOR-1) knockout mice.”*?> The specific
action of EM-1 and EM-2 in stimulating the p-opioid receptor found
in vitro is consistent with the in vivo antinociceptive studies in mice.
Both EM-1 and EM-2 given intracerebroventricularly or intrathecally
produce potent antinociception, which is blocked by pretreatment
with CTOP or B-funaltrexamine.'*?4?> EM-1 or EM-2 does not pro-
duce any antinociception in MOR-1 knockout mice or in p-opioid
receptor-deficient CXBK mice, indicating that p-opioid receptors play
an essential role in mediating EM-induced antinociception.'4%??>
Recent studies indicate that different subtypes of p-opioid re-
ceptors are involved in the antinociception induced by EM-1 and
EM-2. Similar to (—)-morphine or [D-Ala?,NMePhe* Gly®-ol]
enkephalin (DAMGO), EM-1 stimulates one subtype of p-opioid
receptors, whereas EM-2 stimulates another subtype of p-opioid
receptors that are involved in the release of dynorphin A;_y7 acting
on k-opioid receptors and Met-enkephalin acting on 8,-opioid re-
ceptors for producing antinociception.”*?> This view is supported
by the findings that pretreatment with the p;-receptor antagonist
naloxonazine or 3-methoxynaltrexone blocks the antinociception
induced by EM-2 more effectively than that produced by EM-1.2%7
Spinal pretreatment with antisense oligodeoxynucleotides against
exon-1, -4, or -8 of MOR-1 to knockdown different isoforms of the
u-opioid receptor differentially attenuates the antinociception
induced by EM-1 and EM-2.28 These findings strongly indicate that
different subtypes of p-opioid receptors are involved in the phar-
macological actions produced by EM-1 and EM-2. These two
different subtypes of p-opioid receptors are, therefore, tentatively
designated as p- and p'-opioid receptors (Table 1). The present
review depicts the differential neural mechanisms involved in the
antinociception, acute antinociceptive tolerance, as well as anti-
analgesia and hyperalgesia produced by EM-1 and EM-2.

2. Antinociception (analgesia) produced by EM-1 and EM-2

2.1. Differential antinociception produced by EM-1 and EM-2 given
intracerebroventricularly in mice

EM-1 at a dose of 3.3—16.4 nmol or EM-2 at a dose of 1.6—3.5 nmol,
given intracerebroventricularly dose dependently, inhibits the tail-
flick response in male CD-1 mice (antinociception). The

Table 1 Pharmacology of the subtypes of p-opioid receptor

Subtypes Endogenous ligands Agonists Antagonists
n Endomorphin-1 (—)-Morphine D-Pro?-endomorphin-1
Endomorphin-2 DAMGO B-FNA
(—)-Naloxone
CTOP
W Endomorphin-2 D-Pro?-endomorphin-2

Naloxonazine
3-Methoxynaltrexone
B-FNA

(—)-Naloxone

CTOP

B-FNA = B-funaltrexamine; CTOP = D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NHy;
DAMGO = [D-Ala?>,NMePhe* Gly®-ol]encephalin; EM = endomorphin.
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antinociceptive effect induced by EM-1 or EM-2 reaches its peak 5
minutes after injection, declines rapidly, and returns to the pre-
injection level 20 minutes after injection. Duration of the tail-flick
inhibition induced by EM-1 appears to be longer than that
induced by EM-2. In addition, the 50% effective dose of EM-2 for
inhibiting the tail-flick response is about 3.3-fold higher than that
of EM-1. The slope of the dose—response curve of EM-2 for inhib-
iting the tail-flick response is significantly steeper than that of EM-
1. This difference in slope functions suggests that these two pep-
tides may produce antinociception by different modes of action.’*
The original description of EMs reveals that both compounds
have a profound p selectivity.” Both EMs compete for p-binding
sites over 1000-fold more effectively than for either 8- or k-opioid
receptors.’ Goldberg et al'* also confirm that both EM-1 and EM-2
compete for both p11- and pp-opioid receptor sites potently, but have
no appreciable affinity for either 3- or k-opioid receptors. Inhibition
of the tail-flick and hot-plate responses produced by either EM-1 or
EM-2 (given supraspinally) is blocked completely by the selective
p-opioid receptor antagonist B-funaltrexamine, but not by the
d1-opioid receptor antagonist 7-benzylidenenaltrexone or the
d,-opioid receptor antagonist naltriben.>* The findings are consis-
tent with the view that these two EMs are selective ligands for
p-opioid receptors and that the antinociception induced by EM-1
and EM-2 is mediated by the selective stimulation of p-opioid re-
ceptors, but not by that of 3;- or d;-opioid receptors. However, the
antinociception induced by EM-2, but not by EM-1, is also partially
blocked by pretreatment with the k-opioid receptor antagonist
norbinaltorphimine, indicating that the antinociception induced by
EM-2, but not by EM-1, is produced in part by k-opioid receptor
activation. Because EM-2 has a very low affinity for k-opioid re-
ceptors in in vitro ligand-binding assays, it is unlikely that EM-
2-induced antinociception is mediated by direct stimulation of
k-opioid receptors. It is most likely that EM-2 produces its anti-
nociception by the release of dynorphin A;_17, which subsequently
acts on k-opioid receptors. This is evidenced by the finding that
pretreatment of mice with an antiserum against dynorphin A;_y7,
which binds the released dynorphin A;_7 attenuates the anti-
nociception induced by EM-2. However, pretreatment with norbi-
naltorphimine or the antiserum against dynorphin Ai_j7 even at
high doses blocks the antinociception induced by EM-2 only
partially and not completely, suggesting that EM-2-induced anti-
nociception is mediated, in part, by a k-minergic mechanism.?*

2.2. Differential mechanisms mediating descending pain controls
for antinociception produced by supraspinally administered EM-1
and EM-2 in mice

Activation of spinipetal descending pain control systems by opioid
receptor agonists plays a major role in the antinociceptive effects
produced by stimulation of various opioid agonists given supra-
spinally. These antinociceptive effects involve multiple descending
pain control pathways. The antinociception induced by p-opioid
receptor agonists such as (—)-morphine and DAMGO given supra-
spinally is mediated by the release of noradrenaline and serotonin
(5-HT) acting on ay-adrenoceptors and 5-HT receptors, respec-
tively, in the spinal cord,?®° whereas the antinociception induced
by k-opioid receptor agonists such as U50,488H and bremazocine
given supraspinally is mediated by the release of dynorphin Ai_17
acting on k-opioid receptors.’! The antinociception induced by
B-endorphin given supraspinally is mediated by the release of Met-
enkephalin acting on 8,-opioid receptors.'"'?

Inasmuch as the antinociception induced by either EM-1 or EM-
2 given supraspinally is mediated by the stimulation of p-opioid
receptors,”? both EM-1 and EM-2 given supraspinally will also
use the same descending pain control pathways as that of other
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u-opioid agonists, such as (—)-morphine and DAMGO, for produc-
ing antinociception. Indeed, inhibition of ay-adrenoceptors and 5-
HT receptors in the spinal cord by intrathecal treatment with
yohimbine and methysergide, respectively, effectively inhibits the
antinociception induced by supraspinally administered EM-1 and
EM-2. Similar to (—)-morphine and DAMGO, EM-1 and EM-2 acti-
vate the spinipetal noradrenergic and serotonergic systems and the
release of noradrenaline, 5-HT acting on oy-adrenoceptors, and
5-HT receptor in the spinal cord for producing antinociception.>?
Besides the monoaminergic descending pain control systems,
which are activated by EM-1 and EM-2, two additional opioidergic
descending pathways are also involved in antinociception induced
by supraspinally administered EM-2, but not by EM-1. This is evi-
denced by the finding that spinal pretreatment with the d,-opioid
receptor antagonist naltriben or the k-opioid receptor antagonist
norbinaltorphimine attenuates the antinociception produced by
supraspinally administered EM-2. Because d,- and k-opioid re-
ceptors are the receptors for endogenous ligands Met-enkephalin
and dynorphins, respectively, it is expected that the effects are
mediated by the release of Met-enkephalin and dynorphin Aj_17.
Indeed, spinal pretreatment with an antiserum against Met-
enkephalin or dynorphin Ai_;7 given intrathecally significantly
attenuates the antinociception induced by EM-2. By contrast, spinal
pretreatment with an antiserum against B-endorphin or Leu-
enkephalin does not affect the antinociception induced by supra-
spinally administered EM-2. Thus, antinociception induced by
supraspinally administered EM-2 contains additional components,
which are mediated by the release of Met-enkephalin and dynor-
phin A;_17 acting on d,- and k-opioid receptors, respectively, in the
spinal cord.>” Pharmacological findings of EM-2 on the release of
Met-enkephalin for producing antinociception are in line with the
biochemical finding that EM-2, but not EM-1 given intraventricu-
larly, increases the release of immunoreactive Met-enkephalin in
the spinal perfusates in male CD rats. The increased release of Met-
enkephalin from the spinal cord induced by EM-2 is blocked by p-
opioid receptor antagonist CTOP.>? Figure 1 illustrates the p-opioid
receptor-mediated spinipetal descending pain control systems
activated by EM-1 and EM-2 for producing antinociception.

2.3. Differential antinociception induced by spinally administered
EM-1 and EM-2 in mice

EM-1 or EM-2 at a dose of 0.04-5 nmol given into the intrathecal
space of the spinal cord dose dependently produces antinociception
(analgesia), measured with the thermal tail-flick or paw-withdrawal
test in mice.?>?® The antinociception reaches its peak 5 minutes
after injection, rapidly declines, and returns to the preinjection level
20 minutes after injection. The duration of the antinociception
induced by EM-1 and EM-2 given spinally is about the same, but EM-
1 is about two-fold more potent than EM-2.2> The antinociception
induced by either EM-1 or EM-2 given spinally can completely be
blocked by spinal pretreatment with the p-opioid receptor antago-
nist CTOP or (—)-naloxone, indicating that the antinociception
induced by EM-1 and EM-2 is also mediated by the stimulation of
u-opioid receptors in the spinal cord.?>?%34 Both EM-1 and EM-2 do
not activate G-proteins in the spinal cord of the p-opioid receptor
knockout mice.”>?*?> However, the antinociception induced by
spinally administered EM-2, but not by EM-1, contains additional
components, which are mediated by the release of dynorphin A;_17
and Met-enkephalin in the spinal cord. This view is supported by the
finding that spinal pretreatment with an antiserum against dynor-
phin A;_17 or Met-enkephalin attenuates the antinociception
induced by EM-2 given spinally. In addition, spinal pretreatment
with the k-opioid receptor antagonist norbinaltorphimine and 3;-
opioid receptor antagonist naltriben blocks the antinociception
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Figure 1 Schematic representation of two separate spinipetal descending pain control
systems stimulated by endomorphin-1 and endomorphin-2 for producing anti-
nociception. Endomorphin-1 and endomorphin-2 given supraspinally stimulates one
subtype of p-opioid receptors to induce the release of noradrenaline and 5-HT acting
on oy-adrenoceptors and 5-HT receptors, respectively, in the spinal cord for the pro-
duction of antinociception. Endomorphin-2 given supraspinally also stimulates
another subtype of p-opioid receptors and/or (’-opioid receptors, to induce the release
of dynorphin A;_j; and Met-enkephalin acting on k- and O,-opioid receptors,
respectively, in the spinal cord for producing antinociception. Dyn = dynorphin A;_17;
Met-enk = Met-enkephalin; NE = norepinephrine; 5-HT = serotonin.

induced by EM-2 given spinally.”>® Thus, y'-opioid receptor acti-
vation by EM-2 induces the release of dynorphin A;_y7 and Met-
enkephalin, which subsequently act on k- and d,-opioid receptors,
respectively, for the production of antinociception (Figure 1).2%7

Systemic pretreatment with the p1-opioid receptor antagonist
naloxonazine attenuates the antinociception induced by EM-2, but
not by EM-1 given spinally or supraspinally, indicating that the
antinociception induced by EM-2 is mediated by the stimulation of
different subtypes of p-opioid receptors.?%>> Spinal treatment with
a low dose of D-Pro?-endomorphin-1 (0.1 pmol) markedly atten-
uates the tail-flick inhibition induced by EM-1 (16.4 nmol), but not
by EM-2 (35 nmol) given intrathecally, whereas spinal treatment
with a low dose of D-Pro?-endophalin-2 (16.4 nmol) attenuates the
tail-flick inhibition induced by EM-2 (35 nmol) and, to a much
lesser extent, by EM-1 (16.4 nmol) given intrathecally.>® Pretreat-
ment with different antisense oligodeoxynucleotides against a
different G-protein subunit is also useful to differentiate between
antinociceptive effects induced by EM-1 and EM-2. Spinal pre-
treatment with antisense oligodeoxynucleotides against the G-
protein subunit Giay protein attenuates the antinociception
induced by spinally administered EM-2, but not by EM-1, while
spinal pretreatment with antisense oligodeoxynucleotides against
the G-protein subunit of Giaq, Gias, or Gza does not affect the
antinociception induced by either EM-1 or EM-2.237 Thus, the
observed differential antinociceptive actions induced by EM-1 and
EM-2 are mediated by the stimulation of different subtypes of p-
opioid receptors.

3. Acute antinociceptive tolerance to EM-1 and EM-2

3.1. Acute antinociceptive tolerance and asymmetric cross-
tolerance to EM-1 and EM-2 given intracerebroventricularly in mice

Pretreatment with a high dose of the p-opioid receptor agonist
attenuates the antinociception produced by the subsequently
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administered p-opioid agonist. This phenomenon has been defined
as acute antinociceptive tolerance. Similar to other p-opioid ago-
nists, pretreatment with a high dose of EM-1 (30 nmol) or EM-2
(70 nmol) injected intracerebroventricularly produces anti-
nociceptive tolerance to the subsequent administration of EM-1 or
EM-2, respectively, in male CD-1 mice, measured by the tail-flick
test.>® Acute antinociceptive tolerance caused by EM-1 appears to
develop at a much slower rate than that caused by EM-2. EM-1-
induced antinociceptive tolerance reaches the maximal level at 2
hours and recovers to the control level 3—4 hours after the pre-
treatment with EM-1, whereas EM-2-induced antinociceptive
tolerance develops in 1 hour and recovers to the control level in 90
minutes to 2 hours. Pretreatment with EM-1 (30 nmol) for 2 hours
produces a three-fold shift of the dose—response curve to the right
for EM-1-produced antinociception. Similarly, 1-hour pretreatment
with EM-2 (70 nmol) causes a 3.9-fold shift in the dose—response
curve to the right for EM-2-produced antinociception. In cross-
tolerance studies, pretreatment with EM-2 (70 nmol) causes a
2.3-fold shift of the dose—response curve to the right for EM-1-
produced antinociception, whereas pretreatment with EM-1
(30 nmol) causes no change in the dose—response curve for EM-
2-produced antinociception. Thus, mice acutely made tolerant to
EM-1 are not cross-tolerant to EM-2, although mice made tolerant
to EM-2 are partially cross-tolerant to EM-1; thus, an asymmetric
cross-tolerance occurs. Pretreatment with DAMGO (0.03 nmol), a
highly selective p-opioid receptor agonist, for 3 hours given intra-
cerebroventricularly attenuates markedly the antinociception
induced by EM-1 and DAMGO, but not by EM-2. This finding sup-
ports the notion that two separate subtypes of p-opioid receptors, p
and |, are involved in the antinociceptive tolerance to EM-1 and
EM-2. One subtype of p-opioid receptors is stimulated by DAMGO,
EM-1, and EM-2, and another subtype is stimulated solely by EM-2.
Thus, pretreatment with EM-2 still attenuates the antinociception
induced by EM-1; however, pretreatment with EM-1 is unable to
attenuate the antinociception induced by EM-2. Mice made
tolerant to DAMGO show cross-tolerance to EM-1, but not to EM-2.
EM-1 and DAMGO may act on the same subtype of p-receptor,
whereas EM-2 acts on another subtype of p-receptor for producing
antinociception.>®

3.2. Acute antinociceptive tolerance and asymmetric cross-
tolerance to EM-1 and EM-2 given intraventricularly in rats

Pretreatment with EM-1 (30 nmol) or EM-2 (60 nmol) given into
the anterior fourth ventricle develops antinociceptive tolerance to
the subsequently challenging dose of EM-1 or EM-2, respectively, in
male CD-1 rats, measured by the tail-flick test.>> EM-1-induced
antinociceptive tolerance reaches a maximal level at 2 hours and
recovers slowly in 24 hours after the pretreatment with EM-1,
whereas EM-2-induced antinociceptive tolerance develops in 1
hour and recovers to the control level in 4 hours. Pretreatment with
EM-1 (30 nmol) for 2 hours attenuates markedly the anti-
nociception induced by EM-1, and the dose—response curve is
shifted four-fold to the right compared with that of rats pretreated
with saline. Pretreatment with EM-2 (60 nmol) for 1 hour attenu-
ates markedly the antinociception produced by intraventricularly
administered EM-2, and the dose—response curve for EM-2 is
shifted 5.3-fold to the right. In cross-tolerance studies, rats made
tolerant to EM-1 by pretreatment with EM-1 exhibit nearly no
cross-tolerance to EM-2 to produce antinociception. On the other
hand, rats made tolerant to EM-2 exhibits a complete cross-toler-
ance to EM-1 to produce antinociception. The findings of the study
in rats>® are consistent with the finding in mice®® and indicate that
two separate subtype of p-opioid receptor are involved in the
antinociception induced by EM-1 and EM-2.

L.F. Tseng

3.3. Acute antinociceptive tolerance and asymmetric cross-
tolerance to EM-1 and EM-2 given spinally in mice

Pretreatment of mice with a high dose of EM-1 (32.7 nmol) given
intrathecally for 1.5 hours produces 5.3- and 2.4-fold shifts of the
dose—response curves to the right for EM-1- and EM-2-induced
antinociception, respectively; by contrast, pretreatment with EM-
2 (70 nmol) given intrathecally for 1 hour causes 4.3- and 4.5-
fold shifts of the curve to the right for EM-2- and EM-1-induced
antinociception, respectively. Thus, mice made antinociceptive
tolerant to EM-1 given spinally are only partially cross-tolerant to
EM-2, and those made antinociceptive tolerant to EM-2 given
spinally are completely cross-tolerant to EM-1. Thus, anti-
nociceptive effects induced by EM-1 and EM-2 given spinally are
mediated by the stimulation of two different subtypes of pu-opioid
receptors, i and [, in the spinal cord of mice; the p subtype of
p-opioid receptor is stimulated by both EM-1 and EM-2, and the
subtype is stimulated only by EM-2.%°

4. Antianalgesia induced by EM-1 and EM-2 against
(—)-morphine produced analgesia

4.1. Differential mechanisms of antianalgesia induced by EM-1 and
EM-2 given into the ventral periaqueductal gray against
(—)-morphine-produced analgesia in rats

Pretreatment with a small dose of EM-2 (1.7—7.0 nmol) or EM-1
(3.5—28 nmol), given into ventral periaqueductal gray (vPAG) for
45 minutes dose dependently, attenuates the tail-flick inhibition
produced by (—)-morphine (9 nmol) given into VvPAG in male CD
rats. This phenomenon has been defined as antianalgesia. Attenu-
ation of (—)-morphine-produced tail-flick inhibition, induced by
EM-2 or EM-1 pretreatment, is then blocked or reversed by pre-
treatment with the p-opioid antagonist (—)-naloxone, but not by
nonopioid (+)-naloxone, indicating that they are mediated by the
stimulation of p-opioid receptors. However, pretreatment with a
morphine-6f-glucuronide-sensitive p-opioid receptor antagonist
3-methoxynaltrexone selectively blocks EM-2- but not EM-1-
induced antianalgesia. In addition, pretreatment with dynorphin
A1_17 antiserum to bind the endogenous dynorphin A;_y7 blocks
only EM-2- but not EM-1-induced antianalgesia. Pretreatment with
other types of antisera, such as an antiserum against $-endorphin,
Met-enkephalin, Leu-enkephalin, substance P, or cholecystokinin,
or with other opioid receptor antagonists, such as the d-opioid
receptor antagonist naltrindole (2.2 nmol) or the k-opioid receptor
antagonist norbinaltorphimine (6.6 nmol), does not affect EM-2-
induced antianalgesia. Thus, EM-2 selectively releases dynorphin
A1-17 by stimulation of a novel subtype of p-opioid receptors in the
VvPAG to induce antianalgesia against (—)-morphine-produced
analgesia, whereas the antianalgesia induced by EM-1 is mediated
by the stimulation of another subtype of j-opioid receptors.*!

4.2. Dynorphinergic mechanism mediating the antianalgesia
induced by EM-2, but not by EM-1, in the mouse spinal cord

Pretreatment with a small dose of EM-2 (0.05—1.75 nmol), given
into the intrathecal space of the spinal cord for 45 minutes prior to
an intrathecal injection of (—)-morphine (3.0 nmol) dose depen-
dently, attenuates (—)-morphine-induced tail-flick inhibition in
male CD-1 mice. By contrast, pretreatment with a similar dose of
EM-1 (1.64 nmol) fails to produce any antianalgesic effect. The EM-
2 (1.75 nmol)-produced antianalgesia against (—)-morphine-
induced analgesia is blocked by spinal pretreatment with the p-
opioid antagonist (—)-naloxone or 3-methoxynaltrexone, but not
with the d-opioid receptor antagonist naltrindole, k-opioid receptor
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antagonist norbinaltorphimine, or N-methyl-D-aspartate (NMDA)
receptor antagonist MK-801. The EM-2-induced antianalgesic effect
against (—)-morphine-induced analgesia is also blocked by spinal
pretreatment with an antiserum against dynorphin A;_q7 but not
with B-endorphin, Met-enkephalin, Leu-enkephalin, or cholecys-
tokinin antiserum. Thus, EM-2 treatment at a subanalgesic dose
stimulates a subtype of p-opioid receptors and subsequently
induces the release of dynorphin A;_q7 to produce antianalgesic
effects against (—)-morphine-produced antinociception. EM-2-
induced antianalgesia is not mediated by the release of Met-
enkephalin, Leu-enkephalin, f-endorphin, or cholecystokinin, nor
does it involve k- or d-opioid or NMDA receptors in the spinal
cord.*? Pharmacological findings of EM-2 on the release of dynor-
phin Ai_y7 for producing antianalgesia are in line with the
biochemical finding that EM-2 (15—50 nmol) injected into the
spinal perfusate dose dependently increases the release of immu-
noreactive dynorphin A7 in the spinal perfusates of anesthetized
rats. By contrast, EM-1 produces a slight increase only at a high dose
(50 nmol). The increased release of dynorphin A;_;7 from the spinal
cord induced by EM-2 is blocked by the p-opioid receptor antago-
nist (—)-naloxone or 3-methoxynaltrexone.**> The cellular mecha-
nism of EM-1-induced antianalgesia against (—)-morphine-
induced analgesia is not clear.

Thus, both analgesia and antianalgesia produced by EM-2 are
mediated by the release of dynorphin A;i_j7. Dynorphin Aj_q7
released by EM-2 appears to produce biphasic effects—analge-
sia,>#?>3> and antianalgesia®'“*; an initial release of dynorphin
A1_17 produces analgesia, which is mediated by the stimulation of
k-opioid receptors, whereas a delayed release of dynorphin Aj_q7
induces antianalgesia, which is not mediated by the stimulation of
k-opioid receptor or NMDA receptor mechanism.*!

5. Paradoxical hyperalgesia induced by EM-2, but not by
EM-1, microinjected into the centromedial amygdala of rats

The amygdala plays a central role in the interaction of sensory in-
formation, especially pain-related behavior.** Endogenous k-opi-
oids involved in stress-induced analgesia are probably produced
within the amygdala complex, especially the central amygdaloid
nucleus and stria terminalis.*> The central amygdaloid nucleus is an
important site for pain perception and analgesia produced by opi-
oids through the projection to the periaqueductal gray.*® The
central amygdaloid nucleus receives neuronal inputs from the
spinal cord dorsal horn and parabrachial nucleus.’ The spino-
pontoamygdaloid pathway has been shown to specially transmit
nociceptive information.*® In addition, this amygdaloid nucleus
contains endogenous opioid peptides and all their opioid receptors,
including EM-1, EM-2, and p-opioid receptors.'” The nociceptive
threshold is increased following the microinjection of
(—)-morphine and other p-opioid agonists into the central and
basolateral nucleus.*>° Furthermore, lesions placed in the amyg-
dala reduce the magnitude of systemic (—)-morphine analgesia.”’
Analgesia induced by (—)-morphine, elicited from the basolateral
amygdala, is mediated by p-opioid receptors, but not by d- or k-
opioid receptors.’> Thus, the central amygdala may play an
important role in both descending pain facilitating and pain
inhibitory pathways.”>

Microinjection of EM-2 (8.7—35.0 nmol), given into the cen-
tromedial amygdala time and dose dependently, decreases the tail-
flick latencies (hyperalgesia) in male CD rats. By contrast, EM-1
(8—32.6 nmol) given into the same site does not cause any
change of the tail-flick latency. However, EM-2 or EM-1 given into
the basolateral site of amygdala does not affect the tail-flick latency.
The decrease of the tail-flick latencies (hyperalgesia) induced by
EM-2 is reversed by pretreatment with the antiserum against
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dynorphin A;_17. EM-2-induced hyperalgesia is also blocked by the
EM-2 selective p-opioid receptor antagonist 3-methoxynaltrexone
and by the NMDA receptor antagonist MK-801, but not by the p-
opioid receptor antagonist norbinaltorphimine. Thus, EM-2, but not
EM-1, given into the centromedial amygdala stimulates a 3-
methoxynaltrexone-sensitive p-opioid receptor subtype to induce
the release of dynorphin Aj_y7, which then acts on the NMDA re-
ceptor, but not on the p-opioid receptor for producing hyper-
algesia.>* This conclusion is further supported by the additional
finding that dynorphin A;_q7 itself, given into the centromedial
amygdala, also causes a decrease in the tail-flick latency, which is
similarly blocked by the NMDA receptor antagonist MK-801
(30 nmol), but not by the k-opioid receptor antagonist norbi-
naltorphimine (6.6 nmol).>*

Thus, EM-2 can induce either analgesia or hyperalgesia
depending on the brain sites into which it is injected. EM-2
microinjected into the centromedial amygdala, but not into the
basolateral amygdala, induces hyperalgesia. The hyperalgesia
induced by EM-2 is mediated by the stimulation of a selective p-
opioid receptor subtype |/, which subsequently induces the release
of dynorphin A1_17 acting on NMDA receptors, but not on k-opioid
receptors.
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