J Exp Clin Med 2014;6(5):151-156



Contents lists available at ScienceDirect

### Journal of Experimental and Clinical Medicine

journal homepage: http://www.jecm-online.com

### **REVIEW ARTICLE**

# Endomorphin-1 and Endomorphin-2: Involvement of Endogenous $\mu$ -Opioid Receptor Ligands in Analgesia, Antinociceptive Tolerance, Antianalgesia, and Hyperalgesia



Journal of Experimental and Clinical

Medicine

### Leon F. Tseng\*

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA

#### ARTICLE INFO

Article history: Received: Jun 23, 2014 Revised: Jun 30, 2014 Accepted: Aug 8, 2014

KEY WORDS: antinociception(analgesia); dynorphin A<sub>1-17</sub>; hyperalgesia; Met-enkephalin Endomorphin-1 (EM-1) and endomorphin-2 (EM-2) are endogenous ligands for µ-opioid receptors. Both EM-1 and EM-2, given supraspinally or spinally, produce potent antinociception (analgesia) in mice and rats, measured by the thermal tail-flick response. The antinociception produced by either EM-1 or EM-2 is mediated by the stimulation of  $\mu$ -opioid receptors, but not by  $\delta$ - or  $\kappa$ -opioid receptors. EM-1 or EM-2 given supraspinally stimulates primarily  $\mu$ -opioid receptors and subsequently releases spinipetal noradrenaline and serotonin, acting on  $\alpha_2$ -adrenoceptors and serotonin receptors in the spinal cord for producing antinociception. However, the antinociception produced by EM-2, but not by EM-1, also contains an additional component, which is mediated by the release of dynorphin  $A_{1-17}$  and Metenkephalin acting on  $\kappa$ -opioid receptors and  $\delta_2$ -receptors, respectively, in the spinal cord for producing antinociception. Pretreatment with EM-1 or EM-2, given supraspinally or spinally, attenuates the antinociception (antinociceptive tolerance) produced by EM-1 or EM-2, respectively. Pretreatment with EM-2 attenuates the antinociception produced by EM-1; however, pretreatment with EM-1 does not attenuate the antinociception produced by EM-2 (asymmetric cross-tolerance). The antinociception produced by (-)-morphine given into the ventral periaqueductal gray is attenuated by pretreatment with a subanalgesic dose of EM-1 or EM-2 given into the ventral periaqueductal gray in rats (antianalgesia). The antianalgesia produced by EM-2, but not by EM-1, is mediated by the release of dynorphin  $A_{1-17}$ , which antagonizes the analgesic response to (–)-morphine. EM-2, but not EM-1, given into the centromedial amygdala decreases the tail-flick latencies (hyperalgesia) in rats. The hyperalgesia induced by EM-2 from centromedial amygdala is mediated by the release of dynorphin  $A_{1-17}$  acting on N-methyl-D-aspartate receptors. It is therefore proposed that there are two separate subtypes of  $\mu$ -opioid receptors:  $\mu$  and  $\mu'$ . The  $\mu$ -opioid receptors are stimulated by both EM-1 and EM-2, (–)-morphine, and [D-Ala<sup>2</sup>,NMePhe<sup>4</sup>,Gly<sup>5</sup>-ol]enkephalin, and blocked by D-Pro<sup>2</sup>-endomorphin-1. The µ'-opioid receptors are stimulated by EM-2 but not by EM-1, and blocked by D-Pro<sup>2</sup>-endomorphin-2, naloxonazine, and 3-methoxynaltrexone. However, both subtypes of  $\mu$ -opioid receptors are commonly blocked by β-funaltrexamine, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH<sub>2</sub>, and (–)-naloxone.

Copyright © 2014, Taipei Medical University. Published by Elsevier Taiwan LLC. All rights reserved.

### 1. Introduction

Since the initial demonstration of  $\mu$ -opioid receptors more than 35 years ago, investigators have searched for their endogenous ligands. The search led to the discovery of enkephalins, endorphins, and dynorphins in the 1970s<sup>1–5</sup>; yet they have either low selectivity or low efficacy for the  $\mu$ -opioid receptors.<sup>6,7</sup> Enkephalins are endogenous ligands for  $\delta$ -opioid receptors, and dynorphin A<sub>1–17</sub> is

an endogenous ligand for  $\kappa$ -opioid receptors.  $^{8,9}$  Although  $\beta$ -endorphin is an endogenous ligand for  $\epsilon$ -opioid receptors,  $^{10-12}$  it also binds equally well to  $\mu$ - and  $\delta$ -opioid receptors with high affinity.  $^{13}$  Thus, many investigators believe that these peptides are not the endogenous ligands for  $\mu$ -opioid receptors due to their selectivity profiles.

Later, two new peptides, endomorphin-1 (EM-1, Tyr-Pro-Trp-Phe-NH<sub>2</sub>) and endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH<sub>2</sub>), have been isolated from mammalian brain and found to activate  $\mu$ -opioid receptors with high affinity and selectivity, raising the possibility that they are two endogenous  $\mu$ -opioid receptor ligands.<sup>7</sup> In opioid receptor binding assays, both EM-1 and EM-2 compete with  $\mu$ -opioid receptor sites potently.<sup>14</sup> Neither compound has appreciable affinities

http://dx.doi.org/10.1016/j.jecm.2014.08.001

1878-3317/Copyright © 2014, Taipei Medical University. Published by Elsevier Taiwan LLC. All rights reserved.

Conflicts of interest: The author declares no financial conflicts of interest in writing this review.

<sup>\*</sup> Leon F. Tseng, 794 Lakeshore Drive, Redwood City, CA, USA. E-mail: <a href="mailto:selfate:selfate:education-complexe:red;">tseng@att.net>.</a>

for  $\delta$ - and  $\kappa$ -opioid receptors. Endomorphins (EMs) were found in the brain and spinal cord regions, which are also rich in u-opioid receptors.<sup>7,15–19</sup> Both EM-1 and EM-2 also induce µ-opioid receptormediated G protein activation by increasing the binding of  $[^{35}S]$ guanosine 5'-O-(3-thio)triphosphate, which is selectively blocked by the u-opioid receptor antagonists β-funaltrexamine and D-Phe-Cvs-Tvr-D-Trp-Orn-Thr-Pen-Thr-NH<sub>2</sub> (CTOP), but not by δ-opioid receptor antagonist naltrindole or κ-opioid receptor antagonist norbinaltorphimine.<sup>20,21</sup> In addition, neither EM-1 nor EM-2 induces any G protein activation in the membrane preparation obtained from μ-opioid receptor clone (MOR-1) knockout mice.<sup>22,23</sup> The specific action of EM-1 and EM-2 in stimulating the µ-opioid receptor found in vitro is consistent with the in vivo antinociceptive studies in mice. Both EM-1 and EM-2 given intracerebroventricularly or intrathecally produce potent antinociception, which is blocked by pretreatment with CTOP or  $\beta$ -funaltrexamine.<sup>14,24,25</sup> EM-1 or EM-2 does not produce any antinociception in MOR-1 knockout mice or in µ-opioid receptor-deficient CXBK mice, indicating that µ-opioid receptors play an essential role in mediating EM-induced antinociception.<sup>14,22,2</sup>

Recent studies indicate that different subtypes of µ-opioid receptors are involved in the antinociception induced by EM-1 and EM-2. Similar to (–)-morphine or [D-Ala<sup>2</sup>,NMePhe<sup>4</sup>,Gly<sup>5</sup>-ol] enkephalin (DAMGO), EM-1 stimulates one subtype of µ-opioid receptors, whereas EM-2 stimulates another subtype of µ-opioid receptors that are involved in the release of dynorphin  $A_{1-17}$  acting on  $\kappa$ -opioid receptors and Met-enkephalin acting on  $\delta_2$ -opioid receptors for producing antinociception.<sup>24,25</sup> This view is supported by the findings that pretreatment with the  $\mu_1$ -receptor antagonist naloxonazine or 3-methoxynaltrexone blocks the antinociception induced by EM-2 more effectively than that produced by EM-1.<sup>26,27</sup> Spinal pretreatment with antisense oligodeoxynucleotides against exon-1, -4, or -8 of MOR-1 to knockdown different isoforms of the µ-opioid receptor differentially attenuates the antinociception induced by EM-1 and EM-2.<sup>28</sup> These findings strongly indicate that different subtypes of µ-opioid receptors are involved in the pharmacological actions produced by EM-1 and EM-2. These two different subtypes of µ-opioid receptors are, therefore, tentatively designated as  $\mu$ - and  $\mu$ '-opioid receptors (Table 1). The present review depicts the differential neural mechanisms involved in the antinociception, acute antinociceptive tolerance, as well as antianalgesia and hyperalgesia produced by EM-1 and EM-2.

#### 2. Antinociception (analgesia) produced by EM-1 and EM-2

### 2.1. Differential antinociception produced by EM-1 and EM-2 given intracerebroventricularly in mice

EM-1 at a dose of 3.3–16.4 nmol or EM-2 at a dose of 1.6–3.5 nmol, given intracerebroventricularly dose dependently, inhibits the tail-flick response in male CD-1 mice (antinociception). The

Table 1 Pharmacology of the subtypes of µ-opioid receptor

| Subtypes | Endogenous ligands             | Agonists              | Antagonists                                                                                               |
|----------|--------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|
| μ        | Endomorphin-1<br>Endomorphin-2 | (–)-Morphine<br>DAMGO | D-Pro <sup>2</sup> -endomorphin-1<br>β-FNA<br>(—)-Naloxone<br>CTOP                                        |
| μ′       | Endomorphin-2                  |                       | D-Pro <sup>2</sup> -endomorphin-2<br>Naloxonazine<br>3-Methoxynaltrexone<br>β-FNA<br>(–)-Naloxone<br>CTOP |

 $\beta$ -FNA =  $\beta$ -funaltrexamine; CTOP = D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH<sub>2</sub>; DAMGO = [D-Ala<sup>2</sup>,NMePhe<sup>4</sup>,Gly<sup>5</sup>-ol]encephalin; EM = endomorphin. antinociceptive effect induced by EM-1 or EM-2 reaches its peak 5 minutes after injection, declines rapidly, and returns to the preinjection level 20 minutes after injection. Duration of the tail-flick inhibition induced by EM-1 appears to be longer than that induced by EM-2. In addition, the 50% effective dose of EM-2 for inhibiting the tail-flick response is about 3.3-fold higher than that of EM-1. The slope of the dose—response curve of EM-2 for inhibiting the tail-flick response is significantly steeper than that of EM-1. This difference in slope functions suggests that these two peptides may produce antinociception by different modes of action.<sup>24</sup>

The original description of EMs reveals that both compounds have a profound  $\mu$  selectivity.<sup>7</sup> Both EMs compete for  $\mu$ -binding sites over 1000-fold more effectively than for either  $\delta$ - or  $\kappa$ -opioid receptors.<sup>7</sup> Goldberg et al<sup>14</sup> also confirm that both EM-1 and EM-2 compete for both  $\mu_1$ - and  $\mu_2$ -opioid receptor sites potently, but have no appreciable affinity for either  $\delta$ - or  $\kappa$ -opioid receptors. Inhibition of the tail-flick and hot-plate responses produced by either EM-1 or EM-2 (given supraspinally) is blocked completely by the selective  $\mu$ -opioid receptor antagonist  $\beta$ -funaltrexamine, but not by the  $\delta_1$ -opioid receptor antagonist 7-benzylidenenaltrexone or the  $\delta_2$ -opioid receptor antagonist naltriben.<sup>24</sup> The findings are consistent with the view that these two EMs are selective ligands for μ-opioid receptors and that the antinociception induced by EM-1 and EM-2 is mediated by the selective stimulation of µ-opioid receptors, but not by that of  $\delta_1$ - or  $\delta_2$ -opioid receptors. However, the antinociception induced by EM-2, but not by EM-1, is also partially blocked by pretreatment with the  $\kappa$ -opioid receptor antagonist norbinaltorphimine, indicating that the antinociception induced by EM-2, but not by EM-1, is produced in part by  $\kappa$ -opioid receptor activation. Because EM-2 has a very low affinity for κ-opioid receptors in in vitro ligand-binding assays, it is unlikely that EM-2-induced antinociception is mediated by direct stimulation of  $\kappa$ -opioid receptors. It is most likely that EM-2 produces its antinociception by the release of dynorphin  $A_{1-17}$ , which subsequently acts on  $\kappa$ -opioid receptors. This is evidenced by the finding that pretreatment of mice with an antiserum against dynorphin  $A_{1-17}$ , which binds the released dynorphin  $A_{1-17}$ , attenuates the antinociception induced by EM-2. However, pretreatment with norbinaltorphimine or the antiserum against dynorphin  $A_{1-17}$  even at high doses blocks the antinociception induced by EM-2 only partially and not completely, suggesting that EM-2-induced antinociception is mediated, in part, by a  $\kappa$ -minergic mechanism.<sup>2</sup>

## 2.2. Differential mechanisms mediating descending pain controls for antinociception produced by supraspinally administered EM-1 and EM-2 in mice

Activation of spinipetal descending pain control systems by opioid receptor agonists plays a major role in the antinociceptive effects produced by stimulation of various opioid agonists given supraspinally. These antinociceptive effects involve multiple descending pain control pathways. The antinociception induced by  $\mu$ -opioid receptor agonists such as (–)-morphine and DAMGO given supraspinally is mediated by the release of noradrenaline and serotonin (5-HT) acting on  $\alpha_2$ -adrenoceptors and 5-HT receptors, respectively, in the spinal cord,<sup>29,30</sup> whereas the antinociception induced by  $\kappa$ -opioid receptor agonists such as U50,488H and bremazocine given supraspinally is mediated by the release of dynorphin A<sub>1-17</sub> acting on  $\kappa$ -opioid receptors.<sup>31</sup> The antinociception induced by  $\beta$ -endorphin given supraspinally is mediated by the release of Metenkephalin acting on  $\delta_2$ -opioid receptors.<sup>11,12</sup>

Inasmuch as the antinociception induced by either EM-1 or EM-2 given supraspinally is mediated by the stimulation of  $\mu$ -opioid receptors,<sup>24</sup> both EM-1 and EM-2 given supraspinally will also use the same descending pain control pathways as that of other

 $\mu$ -opioid agonists, such as (–)-morphine and DAMGO, for producing antinociception. Indeed, inhibition of  $\alpha_2$ -adrenoceptors and 5-HT receptors in the spinal cord by intrathecal treatment with yohimbine and methysergide, respectively, effectively inhibits the antinociception induced by supraspinally administered EM-1 and EM-2. Similar to (–)-morphine and DAMGO, EM-1 and EM-2 activate the spinipetal noradrenergic and serotonergic systems and the release of noradrenaline, 5-HT acting on  $\alpha_2$ -adrenoceptors, and 5-HT receptor in the spinal cord for producing antinociception.<sup>32</sup>

Besides the monoaminergic descending pain control systems, which are activated by EM-1 and EM-2, two additional opioidergic descending pathways are also involved in antinociception induced by supraspinally administered EM-2, but not by EM-1. This is evidenced by the finding that spinal pretreatment with the  $\delta_2$ -opioid receptor antagonist naltriben or the  $\kappa$ -opioid receptor antagonist norbinaltorphimine attenuates the antinociception produced by supraspinally administered EM-2. Because  $\delta_2$ - and  $\kappa$ -opioid receptors are the receptors for endogenous ligands Met-enkephalin and dynorphins, respectively, it is expected that the effects are mediated by the release of Met-enkephalin and dynorphin  $A_{1-17}$ . Indeed, spinal pretreatment with an antiserum against Metenkephalin or dynorphin  $A_{1-17}$  given intrathecally significantly attenuates the antinociception induced by EM-2. By contrast, spinal pretreatment with an antiserum against β-endorphin or Leuenkephalin does not affect the antinociception induced by supraspinally administered EM-2. Thus, antinociception induced by supraspinally administered EM-2 contains additional components. which are mediated by the release of Met-enkephalin and dynorphin A<sub>1-17</sub> acting on  $\delta_2$ - and  $\kappa$ -opioid receptors, respectively, in the spinal cord.<sup>32</sup> Pharmacological findings of EM-2 on the release of Met-enkephalin for producing antinociception are in line with the biochemical finding that EM-2, but not EM-1 given intraventricularly, increases the release of immunoreactive Met-enkephalin in the spinal perfusates in male CD rats. The increased release of Metenkephalin from the spinal cord induced by EM-2 is blocked by μopioid receptor antagonist CTOP.<sup>33</sup> Figure 1 illustrates the μ-opioid receptor-mediated spinipetal descending pain control systems activated by EM-1 and EM-2 for producing antinociception.

### 2.3. Differential antinociception induced by spinally administered EM-1 and EM-2 in mice

EM-1 or EM-2 at a dose of 0.04-5 nmol given into the intrathecal space of the spinal cord dose dependently produces antinociception (analgesia), measured with the thermal tail-flick or paw-withdrawal test in mice.<sup>25,26</sup> The antinociception reaches its peak 5 minutes after injection, rapidly declines, and returns to the preinjection level 20 minutes after injection. The duration of the antinociception induced by EM-1 and EM-2 given spinally is about the same, but EM-1 is about two-fold more potent than EM-2.<sup>25</sup> The antinociception induced by either EM-1 or EM-2 given spinally can completely be blocked by spinal pretreatment with the µ-opioid receptor antagonist CTOP or (-)-naloxone, indicating that the antinociception induced by EM-1 and EM-2 is also mediated by the stimulation of  $\mu$ -opioid receptors in the spinal cord.<sup>25,26,34</sup> Both EM-1 and EM-2 do not activate G-proteins in the spinal cord of the μ-opioid receptor knockout mice.<sup>20,22</sup> However, the antinociception induced by spinally administered EM-2, but not by EM-1, contains additional components, which are mediated by the release of dynorphin  $A_{1-17}$ and Met-enkephalin in the spinal cord. This view is supported by the finding that spinal pretreatment with an antiserum against dynorphin A<sub>1-17</sub> or Met-enkephalin attenuates the antinociception induced by EM-2 given spinally. In addition, spinal pretreatment with the  $\kappa$ -opioid receptor antagonist norbinaltorphimine and  $\delta_2$ opioid receptor antagonist naltriben blocks the antinociception



**Figure 1** Schematic representation of two separate spinipetal descending pain control systems stimulated by endomorphin-1 and endomorphin-2 for producing antinociception. Endomorphin-1 and endomorphin-2 given supraspinally stimulates one subtype of  $\mu$ -opioid receptors to induce the release of noradrenaline and 5-HT acting on  $\alpha_2$ -adrenoceptors and 5-HT receptors, respectively, in the spinal cord for the production of antinociception. Endomorphin-2 given supraspinally also stimulates another subtype of  $\mu$ -opioid receptors and/or  $\mu'$ -opioid receptors, to induce the release of dynorphin A<sub>1-17</sub> and Met-enkephalin acting on  $\kappa$ - and  $\delta_2$ -opioid receptors, respectively, in the spinal cord for producing antinociception. Dyn = dynorphin A<sub>1-17</sub>; Met-enk = Met-enkephalin; NE = norepinephrine; 5-HT = serotonin.

induced by EM-2 given spinally.<sup>25,26</sup> Thus,  $\mu'$ -opioid receptor activation by EM-2 induces the release of dynorphin A<sub>1-17</sub> and Metenkephalin, which subsequently act on  $\kappa$ - and  $\delta_2$ -opioid receptors, respectively, for the production of antinociception (Figure 1).<sup>25,27</sup>

Systemic pretreatment with the  $\mu_1$ -opioid receptor antagonist naloxonazine attenuates the antinociception induced by EM-2, but not by EM-1 given spinally or supraspinally, indicating that the antinociception induced by EM-2 is mediated by the stimulation of different subtypes of µ-opioid receptors.<sup>26,35</sup> Spinal treatment with a low dose of D-Pro<sup>2</sup>-endomorphin-1 (0.1 pmol) markedly attenuates the tail-flick inhibition induced by EM-1 (16.4 nmol), but not by EM-2 (35 nmol) given intrathecally, whereas spinal treatment with a low dose of D-Pro<sup>2</sup>-endophalin-2 (16.4 nmol) attenuates the tail-flick inhibition induced by EM-2 (35 nmol) and, to a much lesser extent, by EM-1 (16.4 nmol) given intrathecally.<sup>36</sup> Pretreatment with different antisense oligodeoxynucleotides against a different G-protein subunit is also useful to differentiate between antinociceptive effects induced by EM-1 and EM-2. Spinal pretreatment with antisense oligodeoxynucleotides against the Gprotein subunit Gia2 protein attenuates the antinociception induced by spinally administered EM-2, but not by EM-1, while spinal pretreatment with antisense oligodeoxynucleotides against the G-protein subunit of Gia<sub>1</sub>, Gia<sub>3</sub>, or Gza does not affect the antinociception induced by either EM-1 or EM-2.<sup>37</sup> Thus, the observed differential antinociceptive actions induced by EM-1 and EM-2 are mediated by the stimulation of different subtypes of µopioid receptors.

#### 3. Acute antinociceptive tolerance to EM-1 and EM-2

#### 3.1. Acute antinociceptive tolerance and asymmetric crosstolerance to EM-1 and EM-2 given intracerebroventricularly in mice

Pretreatment with a high dose of the  $\mu$ -opioid receptor agonist attenuates the antinociception produced by the subsequently

administered µ-opioid agonist. This phenomenon has been defined as acute antinociceptive tolerance. Similar to other µ-opioid agonists, pretreatment with a high dose of EM-1 (30 nmol) or EM-2 (70 nmol) injected intracerebroventricularly produces antinociceptive tolerance to the subsequent administration of EM-1 or EM-2, respectively, in male CD-1 mice, measured by the tail-flick test.<sup>38</sup> Acute antinociceptive tolerance caused by EM-1 appears to develop at a much slower rate than that caused by EM-2. EM-1induced antinociceptive tolerance reaches the maximal level at 2 hours and recovers to the control level 3-4 hours after the pretreatment with EM-1, whereas EM-2-induced antinociceptive tolerance develops in 1 hour and recovers to the control level in 90 minutes to 2 hours. Pretreatment with EM-1 (30 nmol) for 2 hours produces a three-fold shift of the dose-response curve to the right for EM-1-produced antinociception. Similarly, 1-hour pretreatment with EM-2 (70 nmol) causes a 3.9-fold shift in the dose-response curve to the right for EM-2-produced antinociception. In crosstolerance studies, pretreatment with EM-2 (70 nmol) causes a 2.3-fold shift of the dose-response curve to the right for EM-1produced antinociception, whereas pretreatment with EM-1 (30 nmol) causes no change in the dose-response curve for EM-2-produced antinociception. Thus, mice acutely made tolerant to EM-1 are not cross-tolerant to EM-2, although mice made tolerant to EM-2 are partially cross-tolerant to EM-1; thus, an asymmetric cross-tolerance occurs. Pretreatment with DAMGO (0.03 nmol), a highly selective µ-opioid receptor agonist, for 3 hours given intracerebroventricularly attenuates markedly the antinociception induced by EM-1 and DAMGO, but not by EM-2. This finding supports the notion that two separate subtypes of u-opioid receptors, u and  $\mu'$ , are involved in the antinociceptive tolerance to EM-1 and EM-2. One subtype of µ-opioid receptors is stimulated by DAMGO, EM-1, and EM-2, and another subtype is stimulated solely by EM-2. Thus, pretreatment with EM-2 still attenuates the antinociception induced by EM-1; however, pretreatment with EM-1 is unable to attenuate the antinociception induced by EM-2. Mice made tolerant to DAMGO show cross-tolerance to EM-1, but not to EM-2. EM-1 and DAMGO may act on the same subtype of  $\mu$ -receptor, whereas EM-2 acts on another subtype of  $\mu$ -receptor for producing antinociception.<sup>38</sup>

#### 3.2. Acute antinociceptive tolerance and asymmetric crosstolerance to EM-1 and EM-2 given intraventricularly in rats

Pretreatment with EM-1 (30 nmol) or EM-2 (60 nmol) given into the anterior fourth ventricle develops antinociceptive tolerance to the subsequently challenging dose of EM-1 or EM-2, respectively, in male CD-1 rats, measured by the tail-flick test.<sup>39</sup> EM-1-induced antinociceptive tolerance reaches a maximal level at 2 hours and recovers slowly in 24 hours after the pretreatment with EM-1, whereas EM-2-induced antinociceptive tolerance develops in 1 hour and recovers to the control level in 4 hours. Pretreatment with EM-1 (30 nmol) for 2 hours attenuates markedly the antinociception induced by EM-1, and the dose-response curve is shifted four-fold to the right compared with that of rats pretreated with saline. Pretreatment with EM-2 (60 nmol) for 1 hour attenuates markedly the antinociception produced by intraventricularly administered EM-2, and the dose-response curve for EM-2 is shifted 5.3-fold to the right. In cross-tolerance studies, rats made tolerant to EM-1 by pretreatment with EM-1 exhibit nearly no cross-tolerance to EM-2 to produce antinociception. On the other hand, rats made tolerant to EM-2 exhibits a complete cross-tolerance to EM-1 to produce antinociception. The findings of the study in rats<sup>39</sup> are consistent with the finding in mice<sup>38</sup> and indicate that two separate subtype of µ-opioid receptor are involved in the antinociception induced by EM-1 and EM-2.

3.3. Acute antinociceptive tolerance and asymmetric crosstolerance to EM-1 and EM-2 given spinally in mice

Pretreatment of mice with a high dose of EM-1 (32.7 nmol) given intrathecally for 1.5 hours produces 5.3- and 2.4-fold shifts of the dose—response curves to the right for EM-1- and EM-2-induced antinociception, respectively; by contrast, pretreatment with EM-2 (70 nmol) given intrathecally for 1 hour causes 4.3- and 4.5-fold shifts of the curve to the right for EM-2- and EM-1-induced antinociception, respectively. Thus, mice made antinociceptive tolerant to EM-1 given spinally are only partially cross-tolerant to EM-2 given spinally are completely cross-tolerant to EM-2 given spinally are mediated by the stimulation of two different subtypes of  $\mu$ -opioid receptor is stimulated by both EM-1 and EM-2, and the  $\mu'$  subtype is stimulated only by EM-2.<sup>40</sup>

### 4. Antianalgesia induced by EM-1 and EM-2 against (–)-morphine produced analgesia

4.1. Differential mechanisms of antianalgesia induced by EM-1 and EM-2 given into the ventral periaqueductal gray against (–)-morphine-produced analgesia in rats

Pretreatment with a small dose of EM-2 (1.7-7.0 nmol) or EM-1 (3.5–28 nmol), given into ventral periaqueductal grav (vPAG) for 45 minutes dose dependently, attenuates the tail-flick inhibition produced by (-)-morphine (9 nmol) given into vPAG in male CD rats. This phenomenon has been defined as antianalgesia. Attenuation of (-)-morphine-produced tail-flick inhibition, induced by EM-2 or EM-1 pretreatment, is then blocked or reversed by pretreatment with the  $\mu$ -opioid antagonist (–)-naloxone, but not by nonopioid (+)-naloxone, indicating that they are mediated by the stimulation of µ-opioid receptors. However, pretreatment with a morphine- $6\beta$ -glucuronide-sensitive  $\mu$ -opioid receptor antagonist 3-methoxynaltrexone selectively blocks EM-2- but not EM-1induced antianalgesia. In addition, pretreatment with dynorphin  $A_{1-17}$  antiserum to bind the endogenous dynorphin  $A_{1-17}$  blocks only EM-2- but not EM-1-induced antianalgesia. Pretreatment with other types of antisera, such as an antiserum against  $\beta$ -endorphin, Met-enkephalin, Leu-enkephalin, substance P, or cholecystokinin, or with other opioid receptor antagonists, such as the  $\delta$ -opioid receptor antagonist naltrindole (2.2 nmol) or the κ-opioid receptor antagonist norbinaltorphimine (6.6 nmol), does not affect EM-2induced antianalgesia. Thus, EM-2 selectively releases dynorphin  $A_{1-17}$  by stimulation of a novel subtype of  $\mu$ -opioid receptors in the vPAG to induce antianalgesia against (-)-morphine-produced analgesia, whereas the antianalgesia induced by EM-1 is mediated by the stimulation of another subtype of  $\mu$ -opioid receptors.<sup>41</sup>

### 4.2. Dynorphinergic mechanism mediating the antianalgesia induced by EM-2, but not by EM-1, in the mouse spinal cord

Pretreatment with a small dose of EM-2 (0.05–1.75 nmol), given into the intrathecal space of the spinal cord for 45 minutes prior to an intrathecal injection of (–)-morphine (3.0 nmol) dose dependently, attenuates (–)-morphine-induced tail-flick inhibition in male CD-1 mice. By contrast, pretreatment with a similar dose of EM-1 (1.64 nmol) fails to produce any antianalgesic effect. The EM-2 (1.75 nmol)-produced antianalgesia against (–)-morphine-induced analgesia is blocked by spinal pretreatment with the  $\mu$ -opioid antagonist (–)-naloxone or 3-methoxynaltrexone, but not with the  $\delta$ -opioid receptor antagonist naltrindole,  $\kappa$ -opioid receptor

antagonist norbinaltorphimine, or N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. The EM-2-induced antianalgesic effect against (-)-morphine-induced analgesia is also blocked by spinal pretreatment with an antiserum against dynorphin  $A_{1-17}$ , but not with β-endorphin, Met-enkephalin, Leu-enkephalin, or cholecystokinin antiserum. Thus, EM-2 treatment at a subanalgesic dose stimulates a subtype of µ-opioid receptors and subsequently induces the release of dynorphin  $A_{1-17}$  to produce antianalgesic effects against (-)-morphine-produced antinociception. EM-2induced antianalgesia is not mediated by the release of Metenkephalin, Leu-enkephalin,  $\beta$ -endorphin, or cholecystokinin, nor does it involve  $\kappa$ - or  $\delta$ -opioid or NMDA receptors in the spinal cord.<sup>42</sup> Pharmacological findings of EM-2 on the release of dynorphin A<sub>1-17</sub> for producing antianalgesia are in line with the biochemical finding that EM-2 (15-50 nmol) injected into the spinal perfusate dose dependently increases the release of immunoreactive dynorphin  $A_{1-17}$  in the spinal perfusates of anesthetized rats. By contrast, EM-1 produces a slight increase only at a high dose (50 nmol). The increased release of dynorphin  $A_{1-17}$  from the spinal cord induced by EM-2 is blocked by the µ-opioid receptor antagonist (-)-naloxone or 3-methoxynaltrexone.<sup>43</sup> The cellular mechanism of EM-1-induced antianalgesia against (-)-morphineinduced analgesia is not clear.

Thus, both analgesia and antianalgesia produced by EM-2 are mediated by the release of dynorphin A<sub>1-17</sub>. Dynorphin A<sub>1-17</sub> released by EM-2 appears to produce biphasic effects—analgesia,<sup>24,25,35</sup> and antianalgesia<sup>41,42</sup>; an initial release of dynorphin A<sub>1-17</sub> produces analgesia, which is mediated by the stimulation of  $\kappa$ -opioid receptors, whereas a delayed release of dynorphin A<sub>1-17</sub> induces antianalgesia, which is not mediated by the stimulation of  $\kappa$ -opioid receptor or NMDA receptor mechanism.<sup>41</sup>

### 5. Paradoxical hyperalgesia induced by EM-2, but not by EM-1, microinjected into the centromedial amygdala of rats

The amygdala plays a central role in the interaction of sensory information, especially pain-related behavior.<sup>44</sup> Endogenous  $\kappa$ -opioids involved in stress-induced analgesia are probably produced within the amygdala complex, especially the central amygdaloid nucleus and stria terminalis.<sup>45</sup> The central amygdaloid nucleus is an important site for pain perception and analgesia produced by opioids through the projection to the periaqueductal gray.<sup>46</sup> The central amygdaloid nucleus receives neuronal inputs from the spinal cord dorsal horn and parabrachial nucleus.<sup>47</sup> The spinopontoamygdaloid pathway has been shown to specially transmit nociceptive information.48 In addition, this amygdaloid nucleus contains endogenous opioid peptides and all their opioid receptors, including EM-1, EM-2, and µ-opioid receptors.<sup>17</sup> The nociceptive threshold is increased following the microinjection of (-)-morphine and other  $\mu$ -opioid agonists into the central and basolateral nucleus.<sup>49,50</sup> Furthermore, lesions placed in the amygdala reduce the magnitude of systemic (–)-morphine analgesia. Analgesia induced by (-)-morphine, elicited from the basolateral amygdala, is mediated by  $\mu$ -opioid receptors, but not by  $\delta$ - or  $\kappa$ opioid receptors.<sup>52</sup> Thus, the central amygdala may play an important role in both descending pain facilitating and pain inhibitory pathways.<sup>53</sup>

Microinjection of EM-2 (8.7–35.0 nmol), given into the centromedial amygdala time and dose dependently, decreases the tailflick latencies (hyperalgesia) in male CD rats. By contrast, EM-1 (8–32.6 nmol) given into the same site does not cause any change of the tail-flick latency. However, EM-2 or EM-1 given into the basolateral site of amygdala does not affect the tail-flick latency. The decrease of the tail-flick latencies (hyperalgesia) induced by EM-2 is reversed by pretreatment with the antiserum against dynorphin A<sub>1–17</sub>. EM-2-induced hyperalgesia is also blocked by the EM-2 selective  $\mu$ -opioid receptor antagonist 3-methoxynaltrexone and by the NMDA receptor antagonist MK-801, but not by the  $\mu$ -opioid receptor antagonist norbinaltorphimine. Thus, EM-2, but not EM-1, given into the centromedial amygdala stimulates a 3-methoxynaltrexone-sensitive  $\mu$ -opioid receptor subtype to induce the release of dynorphin A<sub>1–17</sub>, which then acts on the NMDA receptor, but not on the  $\mu$ -opioid receptor for producing hyperalgesia.<sup>54</sup> This conclusion is further supported by the additional finding that dynorphin A<sub>1–17</sub> itself, given into the centromedial amygdala, also causes a decrease in the tail-flick latency, which is similarly blocked by the NMDA receptor antagonist MK-801 (30 nmol), but not by the  $\kappa$ -opioid receptor antagonist norbinaltorphimine (6.6 nmol).<sup>54</sup>

Thus, EM-2 can induce either analgesia or hyperalgesia depending on the brain sites into which it is injected. EM-2 microinjected into the centromedial amygdala, but not into the basolateral amygdala, induces hyperalgesia. The hyperalgesia induced by EM-2 is mediated by the stimulation of a selective  $\mu$ -opioid receptor subtype  $\mu'$ , which subsequently induces the release of dynorphin A<sub>1-17</sub> acting on NMDA receptors, but not on  $\kappa$ -opioid receptors.

#### References

- Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. *Nature (Lond)* 1975;258:577–80.
- Bradbury AF, Smyth DF, Snell CR, Birdsall NJM, Hulme EC. C-fragment of lipotropin has a high affinity for brain opiate receptors. *Nature (Lond)* 1976;260: 793-5.
- Li CH, Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. *Proc Natl Acad Sci U S A* 1976;73: 1145–8.
- Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. *Proc Natl Acad Sci U S A* 1979;**76**: 6666–70.
- Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. *Proc Natl Acad Sci U S A* 1981;**78**:7219–23.
- Corbett AD, Paterson SJ, Kosterlitz HW. Selectivity of ligands for opioid receptors. In: Herz A, editor. Opioids I, handbook of experimental pharmacology, vol. 104/I. New York: Springer-Verlag; 1993. p. 645–79.
- Zadina JE, Hackler L, Ge L-J, Kastin AJ. A potent and selective endogenous agonist for the μ-opiate receptor. *Nature (Lond)* 1997;386:499-502.
- Knapp RJ, Vaughn LK, Yamamura HI. Selective ligands for μ and δ opioid receptors. In: Tseng LF, editor. *The pharmacology of opioid peptides*. Chur, Switzerland: Harwood Academic Publishers; 1995. p. 1–28.
- Nock B. κ and ε opioid receptor binding. In: Tseng LF, editor. The pharmacology of opioid peptides. Chur, Switzerland: Harwood Academic Publishers; 1995. p. 29–56.
- Tseng LF. Mechanisms of β-endorphin-induced antinociception. In: Tseng LF, editor. *The pharmacology of opioid peptides*. Chur, Switzerland: Harwood Academic Publishers; 1995. p. 249–69.
- Tseng LF. Evidence for ε-opioid receptor-mediated β-endorphin-induced analgesia. Trends Pharmacol Sci 2001;22:623–30.
- Narita M, Tseng LF. Evidence for the existence of β-endorphin-sensitive "ε-opioid receptor" in the brain: the mechanisms of ε-mediated antinociception. Jpn J Pharmacol 1998;76:233–53.
- Reisine T. Review: neurotransmitter receptors: V, opiate receptors. Neuropharmacology 1995;34:463–72.
- 14. Goldberg IE, Rosi GC, Letchworth SR, Mathis JP, Ryan-Moro J, Leventhal L, Su W, et al. Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. *J Pharmacol Exp Ther* 1998;**286**:1007–13.
- Martin-Schild S, Zadina JE, Gerall AA, Vigh S, Kastin AJ. Localization of endomorphin-2-like immunoreactivity in the rat medulla and spinal cord. *Peptides* 1997;18:1641–9.
- Martin-Schild S, Gerall AA, Kastin AJ, Zadina JE. Endomorphin-2 is an endogenous opioid in the primary sensory afferent fibers. *Peptides* 1998;19:1783–9.
- Martin-Schild S, Gerall AA, Kastin AJ, Zadina JE. Differential distribution of endomorphin 1- and endomorphin 2-like immunoreactivities in the CNS of the rodent. J Comp Neurol 1999;405:450–71.
- Pierce TL, Grahek MD, Wessendorf MW. Immunoreactivity for endomorphin-2 occurs in primary afferents in rats and monkey. *Neuroreport* 1998;9:385–9.
- Schreff M, Schulz S, Wiborny D, Höllt V. Immunofluorescent identification of endomorphin-2-contraining nerve fibers and terminals in the rat brain and spinal cord. *Neuroreport* 1998;9:1031–4.

- 20. Narita M, Mizoguchi H, Oji GS, Tseng EL, Suganuma C, Nagase H, Tseng LF. Characterization of newly selective endogenous μ-opioid receptor agonist endomorphin-1 and endomorphin-2 on [<sup>35</sup>S]GTPγS binding in mouse spinal cord. *Eur J Pharmacol* 1998;**351**:383–7.
- Narita M, Mizoguchi H, Narita M, Dun NJ, Hwang BH, Endoh T, Suzuki T, et al. G-protein activation by endomorphins in the mouse periaqueductal gray matter. J Biomed Sci 2000;7:221–5.
- 22. Mizoguchi H, Narita M, Oji DE, Suganuma C, Nagase H, Sora I, Uhl GR, et al. μ-Opioid receptor gene-dose dependent reductions in G-protein activation in the pons/medulla and antinociception induced by endomorphins in μ-opioid receptor knockout mice. *Neuroscience* 1999;**94**:203–7.
- Narita M, Mizoguchi H, Sora I, Uhl GR, Tseng LF. Absence of G-protein activation by endomorphin-1 and -2 in the spinal cord of μ-opioid receptor knockout mice. Br J Pharmacol 1999;126:451–6.
- 24. Tseng LF, Narita M, Suganuma C, Mizoguchi H, Ohasawa H, Nagase H, Kampine JP. Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse. J Pharmacol Exp Ther 2000;292:576–83.
- **25.** Ohsawa M, Mizoguchi H, Narita M, Nagase H, Kampine JP, Tseng LF. Differential antinociception induced by spinally administered endomorphin-1 and endomorphin-2 in the mouse. *J Pharmacol Exp Ther* 2001;**298**:592–7.
- 26. Sakurada S, Hayashi T, Yuhki M, Fujimura T, Maruyama K, Yonezawa A, Sakurada C, et al. Differential antagonism of endomorphin-1 and endomorphin-2 spinal antinociception by naloxonazine and 3-methoxynaltrexone. *Brain Res* 2000;88:1–8.
- Sakurada S, Hayashi T, Yuhki M, Orito T, Zadina JE, Kastin AJ, Fujimura T, et al. Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse. *Eur J Pharmacol* 2001;**427**: 203–10.
- 28. Wu HE, Mizoguchi H, Terashvili M, Leitermann RJ, Hung KC, Fujimoto JM, Tseng LF. Spinal pretreatment with antisense oligodeoxynucleotides against exon-1, -2 or -8 of µ-opioid receptor clone leads to differential loss of spinal endomorphin-1- and endomorphin-2-induced antinociception in the mouse. J Pharmacol Exp Ther 2002;303:867–73.
- **29.** Tseng LF, Tang R. Differential mechanisms mediate β-endorphin- and morphine-induced inhibition of the tail-flick response in rats. *J Pharmacol Exp Ther* 1990;**252**:546–51.
- 30. Tseng LF, Collins KA. Different mechanisms mediating tail-flick inhibition induced by β-endorphin, DAMGO and morphine from Rob and GiA in anesthetized rat. J Pharmacol Exp Ther 1991;257:530–8.
- Tseng LF, Collins KA. Spinal involvement of both dynorphin A and Metenkephalin in the antinociception induced by intracerebroventricularly administered bremazocine but not morphine in the mouse. J Pharmacol Exp Ther 1993;266:1430–8.
- **32.** Ohsawa M, Mizoguchi H, Narita M, Chu M, Nagase H, Tseng LF. Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally-administered endomorphin-1 and endomorphin-2 in the mouse. *J Pharmacol Exp Ther* 2000;**294**:1106–11.
- 33. Ohsawa M, Ohsawa M, Mizoguchi H, Narita M, Kawai K, Nagase H, Narita M, et al. Release of immunoreactive [Met<sup>5</sup>]enkephalin from the spinal cord by intraventricular injection of endomorphin-1, but not endomorphin-2 in the anesthetized rats. *Neurosci Lett* 2001;**316**:1–4.
- 34. Stone LS, Fairbanks CA, Laughlin TM, Nguyen HO, Bushy TM, Wessendorf MW, Wilcox GL. Spinal analgesic actions of the new endogenous opioid peptides endomorphin-1 and -2. *Neuroreport* 1997;8:3131–5.
- Sakudara S, Zadina JE, Kastin AJ, Katsuyama S, Fujimura T, Murayama K, Yuki M, et al. Differential involvement of μ-opioid receptor subtypes in endomorphin-1- and endomorphin-2-induced antinociception. *Eur J Pharmacol* 1999;**372**: 25–30.
- **36.** Hung KC, Wu HE, Mizoguchi H, Sakurada S, Okayama T, Fujimura T, Murayama K, et al. D-Pro<sup>2</sup>-endomorphin-1 and D-Pro<sup>2</sup>-endomorphin-2 respectively attenuate the antinociception induced by endomorphin-1 and

endomorphin-2 given intrathecally in the mouse. J Pharmacol Exp Ther 2002:303:874-9.

- 37. Sanchez-Blazquez P, Rodriguez-Diaz M, Deantonio I, Garzon J. Endomorphin-1 and endomorphin-2 show differences in their activation of μ opioid receptor regulated G-proteins in supraspinal antinociception in mice. J Pharmacol Exp Ther 1999;291:12–8.
- Wu HE, Hung KC, Mizoguchi H, Fujimoto JM, Tseng LF. Acute antinociceptive tolerance and asymmetric cross-tolerance between endomorphin-1 and endomorphin-2 given intracerebroventricularly in the mouse. J Pharmacol Exp Ther 2001;299:1120–5.
- Hung KC, Wu HE, Mizoguchi H, Tseng LF. Acute antinociceptive tolerance and unidirectional cross-tolerance to endomorphin-1 and endomorphin-2 given intraventricularly in the rat. *Eur J Pharmacol* 2002;448:169–74.
- **40.** Wu HE, Darpolor M, Nagase H, Tseng LF. Acute antinociceptive tolerance and partial cross-tolerance to endomorphin-1 and endomorphin-2 given intra-thecally in the mouse. *Neurosci Lett* 2003;**348**:139–42.
- Terashvili M, Wu H, Leitermann RJ, Sun H, Clithero AD, Tseng LF. Differential mechanisms of antianalgesia induced by endomorphin-1 and endomorphin-2 in the ventral periaqueductal gray of the rat. J Pharmacol Exp Ther 2005;312: 1257–65.
- 42. Wu HE, Sun HS, Darpolar M, Leitermann J, Kampine JP, Tseng LF. Dynorphinergic mechanism mediating endomorphin-2-induced antianalgesia in the mouse spinal cord. *J Pharmacol Exp Ther* 2003;307:1135–41.
- 43. Leitermann RJ, Terashvili M, Mizoguchi H, Wu HE, Chen F, Clithero A, Tseng LF. Increased release of immunoreactive dynorphin A<sub>1-17</sub> from the spinal cord after intrathecal treatment with endomorphin-2 in anesthetized rats. *Eur J Pharmacol* 2004;**504**:177–83.
- 44. Pikanen A, Savander V, LeDoux JL. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. *Trends Neurosci* 1997;20:517–23.
- **45.** Da Costa Gomez TM, Behbehani MM. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors. *Brain Res* 1995;**689**: 21–31.
- 46. Finnegan TF, Chen SR, Pan HL. Effects of the μ opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 2004;312:441–8.
- Burstein R, Potrebic S. Retrograde labeling of neurons in the spinal cord that directly to the amygdala or the orbital cortex in the rat. J Comp Neurol 1993;335:469–85.
- Bester H, Chapman V, Besson JM, Bernard JF. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Physiol 2000;83:2239–59.
- Helmstetter FJ, Bellgowan PS, Teshner SA. Inhibition of the tail-flick reflex following microinjection of morphine into the amygdala. *NeuroReport* 1993;4: 471–4.
- Rodgers RJ. Influence of intra-amygdaloid opiate injections on shock thresholds, tail-flick latencies and open field behaviour in rats. *Brain Res* 1978;153: 211–390.
- Manning BH, Mayer DJ. The central nuclei of the amygdala contributes to the production of morphine antinociception in the tail-flick test. *J Neurosci* 1995;15:8199–213.
- Helmstetter FJ, Bellgowan PSF, Poore LH. Microinfusion of mu but not delta or kappa opioid agonists into the basolateral amygdala results in inhibition of the tail-flick reflex in pentobarbital-anesthetized rats. J Pharmacol Exp Ther 1995;275:381–8.
- Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. *Annu Rev Neurosci* 1984;7:309–38.
- 54. Terashvili M, Wu HE, Schwasinger E, Tseng LF. Paradoxical hyperalgesia induced by μ-opioid agonist endomorphin-2, but not endomorphin-1, microinjected into the centromedial amygdala of the rat. Eur J Pharmacol 2007;554: 137–44.