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To make good profits, pricing is a competitive weapon of service firms. This paper is
concerned with pricing strategies for services with substantial facility maintenance
costs. To address the problem, a mathematical framework that incorporates service
demand and facility deterioration is proposed. The facility and customers constitute
a service system driven by Poisson arrivals and exponential service times. The most
common log-linear customer demand and Weibull-distributed facility lifetime are
also adopted. By examining the linkage between customer demand and facility
deterioration in profit model, pricing policies of the service are investigated. Then
analytical conditions of customer demand and facility lifetime are derived to achieve
a unique optimal pricing policy. Finally, numerical examples are presented to
illustrate the effects of parameter variations on the optimal pricing policy.

Keywords: service pricing; facility maintenance; Poisson process; log-linear demand;
Weibull lifetime

Introduction

The service sector occupies a large portion of economy in most developed countries and

hence has received increasing attention. In the meanwhile, service firms face many

challenges for survival and success. Pricing as a competitive weapon to attract customers

is an essential issue for most service firms. In this paper, our focus is restricted to services

delivered to customers by the operation of facilities. These kinds of services are common

and important in many service industries. In practice, especially for capital-intensive

industries such as healthcare, transportation, and telecommunications industries, the

service facilities need to be repaired upon failures and thus substantial costs are ascribed

to facility maintenance.

For example, the radiology department of a medical centre usually has advanced

imaging facilities such as computed tomography and magnetic resonance imaging equip-

ment. Most technical revenues of the department are earned from advanced imaging exam-

inations provided by these facilities. However, in addition to heavy capital investments

upon procurement, this kind of medical equipment requires a large portion of total costs

ISSN 0264-2069 print/ISSN 1743-9507 online

# 2011 Taylor & Francis

DOI: 10.1080/02642069.2011.613935

http://www.tandfonline.com

∗Corresponding author. Email: yifnlin.aw@gmail.com

The Service Industries Journal

2011, iFirst Article, 1–18



to be spent on equipment maintenance to ensure smooth operation and service quality.

More precisely, during the medical examination process of a patient, the medical equip-

ment deteriorates and might fail because of its usage. Although this is an illustration in

healthcare institutions, from the perspective of facility maintenance, there are many

similar scenarios in other service industries.

Due to the feature in cost structures, service firms of the type characterized above

should examine facility maintenance costs in detail to determine competitive pricing

policies for good profits. However, in contrast to the importance of these service

industries, service pricing with considerable maintenance costs has received relatively

little attention. This necessity inspires our study to fill the vacuum in the existing literature.

Therefore, this paper strives to achieve the following objectives: (1) to identify the

relationship between service demand and facility deterioration; (2) to propose a model

that incorporates revenues of customer service and costs of facility maintenance; and

(3) to assist the service firms concerned to develop appropriate pricing strategies

subject to facility maintenance.

The rest of this paper is organized as follows. Two streams of relevant literature are

briefly reviewed in the second section. The mathematical model of the service firm’s

profits with facility maintenance costs is formulated in the third section. According to

the profit model, a unique optimal pricing policy for the service is achieved in the

fourth section. The structural properties of the optimal pricing policy are also investigated

and discussed in the fourth section. The effects of parameter variations on the optimal

pricing policy are illustrated by numerical examples in the fifth section. Finally, conclud-

ing remarks and suggestions for further developments are summarized in the last section.

Literature review

There are two streams of literature relevant to this paper. One is service pricing, the other

is maintenance planning. Relevant literature on service pricing is briefly introduced as

follows. In most of the previous works, pricing is regarded as a mechanism to obtain

social optimization, admission control, and reduction of waiting costs for service

systems. Extensive discussions about pricing policies of services can be found in Hassin

and Haviv (2003).

Two more related studies to this paper are So and Song (1998) and Ziya, Ayhan, and

Foley (2006). The models in these two referred papers have similarities with our frame-

work in the perspective of customer demand. So and Song investigate the joint policies

of price, delivery time guarantee, and capacity level of an average per-unit-time profit. In

their framework, delivery time is regarded as a signal of service quality so that delivery

time guarantee can also be used as a strategy to attract customers. Therefore, they treat

demand rate as a function of both price and delivery time guarantee and then adopt a

bi-variable log-linear demand to reflect customer sensitivity in both variables. Ziya

et al. (2006) explore pricing policies for finite capacity systems under an increasing

price elasticity, which is also assumed in our paper. Instead of using log-linear

demand, Ziya et al. employ a random service valuation by customers to depict the

relation between customer arrivals and service price. The price elasticity is thus given

by a willingness-to-pay distribution. However, in all the aforementioned studies, the

service facility is assumed to be reliable and needs no maintenance actions. Therefore,

additional maintenance theory of service facilities is essential to resolve our proposed

problem.

2 Y.-F. Lin et al.



Relevant literature on maintenance planning is briefly reviewed as follows. Most of

the earlier studies investigate schemes for appropriate maintenance actions to ensure

smooth operation of facilities. Comprehensive reviews of various maintenance policies

are referred to Barlow and Proschan (1965), Scarf (1997), and Wang (2002). There

are two main types of maintenance for repairable facilities: corrective maintenance

(CM) and preventive maintenance (PM). CM actions rectify a failed facility to restore

its operation; PM actions are arranged and performed to reduce failures of an operational

facility. Among all types of CM, minimal repair is the most widely adopted maintenance

action. Immediately after minimal repair, the failure rate of the facility is the same as

just before failure. In other words, the rectified facility is identical to what it was just

before failure (as bad as the old). The type of PM employed in our study is periodic

perfect PM, which is performed periodically and brings the facility back to an as good

as new state. Compared with most other types of PM, periodic perfect PM is relatively

simple and easy to be implemented in practice (Barlow & Hunter, 1960; Nakagawa &

Kowada, 1983).

Since this paper deals with facilities in service systems, those studies devoted to

intermittently operated facilities are more closely related to our work. Koyanagi and

Kawai (2003) explore optimal observation time for PM actions in an M/G/l queueing

system. Hsu (1992, 1999) establishes schedules of maintenance actions according to

the number of items produced in a queue-like production system. Dohi, Kaio, and

Osaki (2001) employ renewal theory to derive optimal PM policies over infinite time

horizons under an intermittently used environment. In Koyanagi and Kawai (2003),

the ageing process of the facility is assumed to continue during idle time. This

measure of facility failures might be suitable for some facilities like vending machines.

However, it would not be appropriate for the scenarios in this paper. In Hsu (1992, 1999)

and Dohi et al. (2001), the facility age is measured in cumulative operating time, not in

calendar time. This approach only applies to a facility with a time meter that records the

cumulative operating time. It is not practical either to service systems whose opening

hours must be regular according to calendar time. In the service system of this study,

there is no facility deterioration during idle time and all system operations are conducted

according to calendar time. A measure of facility failures that fits our need is left to be

derived. This brief review of these two streams of previous studies identifies the gap to

be bridged between them. Therefore, this paper will make contributions to service

pricing with the emphasis on maintenance costs of the service facilities subject to

failures.

Model formulation

In this section, basic concepts and assumptions of the model are introduced. Consider a

service system in which the service is provided by an operating facility. Each arriving cus-

tomer from the Poisson stream is served an exponential time. Furthermore, a significant

portion of total costs is spent on facility maintenance to ensure smooth operation of the

service system.

According to the framework illustrated in Figure 1, the primary activities relevant to

the profits of the service firm are described as follows. First, the service demand is realized

by a pricing policy. Next, according to a Poisson process governed by the demand rate,

customers arrive to acquire service provided by the facility. Finally, customers are

served and thus the facility deteriorates because of usage.

The Service Industries Journal 3



As shown in Figure 1, the profits corresponding to the aforementioned activities pri-

marily consist of revenues of sold services, unit operating costs, and maintenance costs

of the facility. In particular, maintenance costs of the facility are incurred by failures

and deterioration. Facility failures are rectified immediately by minimal repairs and

facility condition is brought back to as good as new by PM in the setup for each

working period. In this system, setup cost is primarily the expenditure incurred by PM

to initiate a working period.

Since service demand brings facility usage and then the induced maintenance actions

bring a significant portion of total costs, service demand and facility lifetime are thus inter-

related. Therefore, to maximize the total cash flow depicted in Figure 1, the service firm

should carefully examine the linkage between service demand and facility deterioration in

the determination of pricing policies. Before proceeding further, we need to introduce the

notations and assumptions employed in this paper.

Notations and assumptions

The decision variable is the service price which is denoted by p. Other notations used to

construct the profit model for the service firm are summarized as follows.

l demand rate of the service

m mean processing rate of the service

F(t) lifetime distribution of the facility

h(t) failure (hazard) rate function of the facility

H(t) cumulative failure (hazard) rate function of the facility

T duration between two successive facility setups; length of

working period

K(l;T) number of customers in the time interval [0, T]

N(l;T) number of facility failures in the time interval [0, T]

M(l;T) expected value of N(l;T)

Figure 1. Model framework.
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c unit operating cost of the service (e.g. material and direct

labor costs)

Cm CM (minimal repair) cost of the facility

Cp facility setup cost for each working period of the service

p expected profit of the service firm

To capture analytical insights from the mathematical model, Assumptions A1–A5 are

employed to avoid tedious technicalities. Specifications on service demand and facility

deterioration are described afterwards.

A1. The system has no facility deterioration during idle time.

A2. Time to carry a CM/PM action is negligible relative to a

working period.

A3. A CM action is performed immediately after each facility

failure.

A4. Each customer entering the system will complete the

service, possibly beyond the official opening hours of

the service firm. (The actual service period might exceed

the official opening hours.)

A5. The system satisfies a light traffic condition, that is, l/m , 1.

A6. Service time is cumulative after facility maintenance: the

customer service which is interrupted by a facility failure

will be resumed immediately after the completion of facility

maintenance.

The service demand

To characterize customer sensitivity in service price, the demand rate for the service is

assumed to be driven by the log-linear (Cobb–Douglas) demand

l = l0p−1, (1)

where l0 . 0 is the potential customer arrival rate. While simple, the log-linear model

admits many realistic scenarios in several service industries such as healthcare, telecom-

munications, and information technology (Brynjolfsson, Hu, & Smith, 2003; Gyldmark &

Morrison, 2001; Lanning, Mitra, Wang, & Wright, 2000).

By definition, the parameter 1 is exactly the price elasticity of the service. In practice,

the demands of services/goods are generally decreasing and convex with respect to their

prices. Clearly, the price elasticity 1 must be positive so that the demand rate l is decreas-

ing and convex in the price p. Furthermore, 1 . 1 is assumed throughout this paper so that

the demand rate is also price elastic. This assumption means a price increase will result in a

decrease in revenues, which implies that the market power of the service firm is limited

(Lanning et al., 2000; So & Song, 1998).

The facility lifetime

To incorporate the maintenance costs incurred by facility deterioration into the pricing

decision, the lifetime of the facility in a continuously used environment is assumed to

The Service Industries Journal 5



be Weibull-distributed and thus its probability density function can be written as f(t) ¼ ab

(at)b21e2 (a t)b, t . 0, where a . 0 is the scale parameter and b . 0 is the shape

parameter. Then it follows from definitions that the failure rate function is

h(t) = ab(at)b−1 (2)

and the cumulative failure rate function is

H(t) = (at)b. (3)

Note that greater value of b indicates faster deterioration of the facility. More precisely,

the failure rate h is increasing for b . 1, decreasing for b , 1, and constant for b ¼ 1.

Since an increasing failure rate corresponds to a deteriorating facility which is considered

in most cases, b . 1 is assumed throughout this paper.

It is also worth mentioning that the Weibull distribution is the most widely adopted

lifetime distribution model in the literature. Because of various shape and scale par-

ameters, the Weibull distribution can describe or approximate diverse types of lifetimes

(Lawless, 2003).

The profit model

In this section, the scenario and assumptions are combined together to formulate the math-

ematical model. For each working period of the service, the profits of the service firm

consist of four major components: service revenue, operating cost, CM cost, and setup

cost. In terms of the notations defined in Notations and assumptions, the four profit com-

ponents can be mathematically expressed as follows: the total service revenue is pK(l;T);

the total operating cost is cK(l;T); the total CM cost is CmN(l;T); and the facility setup

cost is Cp. Combining the four major components, the profit function of the service firm

is formulated as

p0(p) = (p − c)K(l; T) − CmN(l; T) − Cp.

Since the number of customers K(l;T) follows the distribution Poisson (Tl) from the

Poisson arrival assumption, taking the expectation of p0(p) yields the expected profit

function

p(p) = E[p0(p)] = (p − c)Tl− CmM(l; T) − Cp. (4)

Now the primary objective of the service firm is to find optimal pricing policies p∗ to

maximize the expected profit (4).

Model analysis

In this section, a unique optimal pricing policy of the service is derived. Obviously the

expected number of facility failures M(l;T) plays an important role in the profit model

(4). Hence several analytical properties of M(l;T) are presented and discussed before

the exploration of the whole profit model.

6 Y.-F. Lin et al.



Analytical properties of the expected number of facility failures

The expected number of facility failures is determined by the lifetime distribution and

maintenance policy of the facility. In a continuously operated environment without PM

actions, because facility failures are rectified by minimal repairs, in terms of the failure

rate h, the failure process of the facility is a nonhomogeneous Poisson process with

intensity h (Nakagawa & Kowada, 1983). Hence, the expected number of facility failures

during the time interval [0, T] is accordingly given by
�T

0
h(s)ds = H(T).

However, in this intermittently used environment illustrated in Figure 2, the expected

number of facility failures during the time interval [0, T] should be derived in another

modified approach. Let TS denote the total cumulative operating time serving customers

during the finite duration [0, T]. Assumption A1 indicates that TS accounts for all

failure occurrences. Therefore, by Nakagawa and Kowada (1983), the conditional

expected number of facility failures is H(tS) for each given TS ¼ tS. That is,

E[N(l;T)|TS ¼ tS] ¼ H(tS). Then the double expectation theorem immediately yields

that the expected number of facility failures M(l;T) ¼ E[N(l;T)] ¼ E[H(TS)]. It now

turns our focus to the distribution of TS.

Assumptions A2–A3 imply that the facility is available almost in the whole duration

[0, T]. Additionally, Assumptions A4–A6 imply that each customer entering the system

will be served an exponential time. Combining these two implications, the total cumulat-

ive operating time TS is approximately Y1 + Y2 + · · · + YK(l;T), where Yi�exp(m) is the

service time for the ith customer. Therefore, the conditional distribution of TS given

K(l;T) ¼ k, k ¼ 1,2, . . ., is the Erlang-k distribution with rate m, that is,

fTs
(t) [K(l;T)=k]
∣∣ = mk

G(k) tk−1e−mt for t . 0, (5)

where G(.) is the gamma function defined by G(z) =
�1

0
tz−1e−tdt. From Equations (3) and

(5), the conditional expectation of the number of facility failures N(l;T) given K(l;T) ¼ k

becomes

E[H(TS) K(l; T) = k| ] = E[(aTS)b K(l; T) = k| ]

= ab

∫1

0

mk

G(k) tb+k−1e−mtdt = a

m

( )b
G(b+ k)
G(k) ,

where k ¼ 1,2, . . .. Applying the double expectation theorem, the expected number of

facility failures can be written as M(l;T) ¼ E[N(l;T)] ¼ E[E[N(l;T)|K(l;T)]] and thus

M(l; T) = a

m

( )b∑1

k=1

G(b+ k)
G(k) e−Tl (Tl)k

k!
. (6)

Figure 2. Facility usage in the service system.
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Here follows the main result of this section which is essential for the investigation of

the profit model.

Proposition 1 The expected number of facility failures M(l;T) is strictly increasing and

strictly convex in demand rate l.

Proof

To prove these analytical properties of M(l;T), it suffices to show that (d/dl)M(l;T) . 0

and (d2/dl2)M(l;T) . 0 for all l . 0. The two derivatives of M(l;T) can be obtained from

Equation (6) by term-by-term differentiation. For the first-order derivative of M(l;T),

the calculations are carried out directly below.

d

dl
M(l; T) = a

m

( )b∑1

k=1

G(b+ k)
G(k) Te−Tl (Tl)k−1

(k − 1)!−
(Tl)k

k!

[ ]

= a

m

( )b

Te−Tl G(b+ 1) +
∑1

k=1

G(b+ k + 1)
G(k + 1) − G(b+ k)

G(k)

[ ]
(Tl)k

k!

{ }

= Tb
a

m

( )b∑1

k=0

G(b+ k)
G(k + 1) e−Tl (Tl)k

k!

(7)

in which the simplified expression (7) of (d/dl)M(l;T) follows from the algebraic

manipulations

G(b+ k + 1)
G(k + 1) − G(b+ k)

G(k) = (b+ k)G(b+ k) − kG(b+ k)
G(k + 1) = bG(b+ k)

G(k + 1) .

For the second-order derivative of M(l;T), similar calculations are also carried out directly

below:

d2

dl2
M(l; T) = T2b

a

m

( )b

e−Tl −G(b) +
∑1

k=1

G(b+ k)
G(k + 1)

(Tl)k−1

(k − 1)!−
(Tl)k

k!

[ ]{ }

= T2b
a

m

( )b

e−Tl −G(b) + G(b+ 1) +
∑1

k=1

G(b+ k + 1)
G(k + 2) − G(b+ k)

G(k + 1)

[ ]
(Tl)k

k!

{ }

= T2b(b− 1) a

m

( )b∑1

k=0

G(b+ k)
G(k + 2) e−Tl (Tl)k

k!

(8)

which is also simplified by the analogous algebraic manipulations

G(b+ k + 1)
G(k + 2) − G(b+ k)

G(k + 1) =
(b+ k)G(b+ k) − (k + 1)G(b+ k)

G(k + 2) = (b− 1)G(b+ k)
G(k + 2) .
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Applying the increasing failure rate assumption, that is, b . 1, to the two expressions (7)

and (8), both derivatives (d/dl)M(l;T) and (d2/dl2)M(l;T) are positive and thus the proof

is completed.

Note that if b is integer-valued, the factor G(b + k)/G(k) in Equation (6) reduces

to k(k + 1) · · · (k + b− 1) which is simply a polynomial in k of order b. Also recall

the fact that all moments about the origin of a Poisson random variable with

parameter Tl are polynomials in Tl (Johnson, Kemp, & Kotz, 2005). Therefore,

M(l;T) can be explicitly expressed as a polynomial in Tl of order b provided that b is

integer-valued.

Additionally, Proposition 1 reveals the implications that when the service facility is

deteriorating over operating time: (a) higher customer frequency results in faster facility

deterioration and thus more expected failure occurrences; and (b) as customer frequency

increases, the growth rate of expected failure occurrences also increases.

Optimal pricing policy for the service firm

The service firm has to determine a service price p to achieve the maximal profit.

However, observations on both structures of the expected profit (4) and the expected

number of facility failures (6) suggest that it is more convenient to express the service

price p in terms of the demand rate l. Assume that an optimal demand rate l∗ exists

for a moment. Then the optimal price p∗ can be obtained by the aforementioned inverse

demand relationship p∗ ¼ p(l∗). That is, the service firm needs only to operate the

system at its optimal customer arrival rate and to post the optimal service price by the

price–demand relationship.

By substituting the inverse demand function p ¼ p(l) given by Equation (1) into

Equation (4), the expected profit function is equivalently reformulated as

p(l) = p(p(l)) = T[l1/1
0 l1−1/1 − cl] − CmM(l; T) − Cp. (9)

Therefore, the original maximization problem is transformed into

maxp(l) = T[l1/1
0 l1−1/1 − cl] − CmM(l; T) − Cp

subject to 0 , l , m.
(10)

The necessary conditions of optimal policies are readily given by the Karush–Kuhn–

Tucker conditions. However, these conditions are not practical to locate the

optimal policies. Therefore, we will present an alternative to characterize optimal

demand rates.

At first, it proceeds in the manner of the traditional approach: the first two derivatives

of p(l) are calculated as follows to investigate the necessary first-order and second-order

The Service Industries Journal 9



conditions for optimality.

dp

dl
= T 1 − 1

1

( )
l

1/1
0 l−1/1 − c

[ ]
− Cm

d

dl
M(l; T) = T 1 − 1

1

( )
l

1/1
0 l−1/1 − c

[ ]

− CmTb
a

m

( )b∑1

k=0

G(b+ k)
G(k + 1) e−Tl (Tl)k

k!
,

d2p

dl2
= −T

1

1
− 1

12

( )
l

1/1
0 l−1/1−1 − Cm

d2

dl2
M(l; T)

= −T
1

1
− 1

12

( )
l

1/1
0 l−1/1−1

− CmT2b(b− 1) a

m

( )b∑1

k=0

G(b+ k)
G(k + 2) e−Tl (Tl)k

k!
.

Clearly, p(l) is globally concave. It is simply because the two assumptions that the

service demand is price elastic (i.e. 1 . 1) and the facility failure rate h is strictly increas-

ing (i.e. b . 1) immediately imply that the second-order condition d2p/dl2 , 0 always

holds for all l. Hence the global optimality is assured for a demand rate that satisfies

the first-order condition dp/dl ¼ 0 and the light traffic condition 0 , l, m. To investi-

gate the first-order condition, let an auxiliary function f be defined as

f(l) = Cmb
a

m

( )b∑1

k=0

G(b+ k)
G(k + 1) e−Tl (Tl)k

k!
+ c

[ ]
l
−1/1
0 l1/1.

Then

f(l) = {(Cm/T)(d/dl)M(l; T) + c}
p(l) (11)

and the original first-order condition dp/dl ¼ 0 is equivalent to

f(l) = 1 − 1

1
. (12)

Note that the first-order condition (12) reveals the trade-off between service revenue

and maintenance cost in the determination of optimal pricing policies: as more customers

are served, more service revenue is received but higher facility deterioration and thus more

CM cost are incurred. On the other hand, as fewer customers are served, less service

revenue is received but lower facility deterioration and thus less CM cost are incurred.

For convenience, these results obtained so far are summarized in the following lemma.

Lemma 1 If a demand rate l∗ maximizes the problem (10), then f(l∗) ¼ 1 2 1/1.

For further investigation of optimal pricing policies, two analytical properties of the

function f are stated immediately below.

10 Y.-F. Lin et al.



Lemma 2 (a) f is positive, strictly increasing, and differentiable for l [ (0,m). (b) f

admits all values between 0 and f(m).

Proof

(a) Clearly, f is positive on (0,m) by its definition. To complete the proof, it suffices to

show that df/dl . 0 on (0,m). Direct differentiation of f yields that

df

dl
= Cm

Tp(l)
d2

dl2
M(l; T) − 1

p(l)2
dp

dl

Cm

T

d

dl
M(l; T) + c

[ ]
.

Applying Proposition 1 with the fact dp/dl = −(1/1)l1/1
0 l−1/1−1 , 0, we have df/dl . 0.

(b) Since f is strictly increasing and continuous for l [ (0,m], by the intermediate value

theorem, it suffices to show that f(0+) ¼ 0. By Equation (7), liml�0+ (d/dl)M(l; T) =
Tb(a/m)bG(b) which exists as a finite value. Substituting this result along with

liml�0+ p(l)−1 = 0 into the definition of f given by Equation (11), it follows that f(0+)¼0.

Now, the exploration returns to the existence of the optimal pricing policy. Assume that

f(m).1 2 1/1. Then, by Lemma 2, f must admit the value 1 2 1/1 at some unique point

l∗[(0,m). Hence the first-order condition (12) and the light traffic condition 0 , l, m are

both satisfied at l∗. More precisely, p(l) is strictly increasing on (0,l∗], strictly decreasing

on [l∗,m), and strictly concave on (0,m). The preceding arguments lead to the following

proposition that characterizes the optimal solution to the maximization problem (10).

Proposition 2 Suppose that f(m).1 2 1/1. Then the expected profit p(l) admits a

unique maximum at the demand rate

l∗ = f−1 1 − 1

1

( )
. (13)

Although the auxiliary function f might be complicated so that the optimal demand

rate l∗ might admit no closed-form expression, the first-order condition (12) that deter-

mines l∗ can be solved numerically by traditional root-finding algorithms such as

Newton’s method and the secant method.

Comparative statics analysis

The optimal service demand l∗ given by Proposition 2 can be regarded as a function of the

parameters in the profit model, while the parameters reflect the business environment.

To find proper reaction to environment changes, the shifting behaviors of l∗ should be

analyzed. Several comparative statics properties of l∗ are summarized in Proposition 3.

Proposition 3 Suppose that f(m) . 1 2 1/1. Then the optimal service demand l∗

determined by the first-order condition (12) is affected by the model parameters in the

following manners:

(a) l∗ is strictly increasing in price elasticity 1 for log(l0/l∗) , 1/(1 2 1); l∗ is

strictly decreasing in price elasticity 1 for log(l0/l∗) . 1/(1 2 1);

(b) l∗ is strictly increasing in potential demand l0;

(c) l∗ is strictly increasing in service processing rate m;

(d) l∗ is strictly decreasing in the length of working period T

(e) l∗ is strictly decreasing in CM cost Cm and unit operating cost c;
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(f) l∗ is strictly decreasing in the scale parameter a and shape parameter b of facility

lifetime distribution.

Proof

Properties (b), (c), (e), and (f) can be easily verified through the first-order condition (12).

Therefore, our task remains to prove properties (a) and (d). Partial differentiation with

respect to 1 on both sides of Equation (12) yields that

1

12
= ∂f

∂1
+ df

dl
(l∗) ∂l

∗

∂1
= − 1

12

( )
f(l∗) log

l∗

l0

( )
+ df

dl
(l∗) ∂l

∗

∂1

= − 1

12

( )
1 − 1

1

( )
log

l∗

l0

( )
+ df

dl
(l∗) ∂l

∗

∂1

which is equivalent to

12 df

dl
(l∗) ∂l

∗

∂1
= 1 + 1 − 1

1

( )
log

l∗

l0

( )
.

Since (df/dl)(l∗) . 0 by Lemma 2, ∂ l∗/∂ 1 . 0 if and only if (1 2 1/1)log (l0/l∗) , 1

or equivalently log(l0/l∗),1/(1 2 1). This proves property (a). Finally, to prove property

(d), the first-order condition (12) is rewritten as

Cmb
a

m

( )b∑1

k=0

G(b+ k)
G(k + 1) e−Tl∗ (Tl∗)k

k!
+ c = 1 − 1

1

( )
l

1/1
0 (l∗)−1/1.

Partial differentiation with respect to T on both sides of the preceding equation yields that

Cmb(b− 1) a

m

( )b∑1

k=0

G(b+ k)
G(k + 2) e−Tl∗ (Tl∗)k

k!
T
∂l∗

∂T
+ l∗

( )

= − 1

1

( )
1 − 1

1

( )
l

1/1
0 (l∗)−1/1−1 ∂l

∗

∂T
.

Assume the contrary that ∂l∗/∂T ≥ 0. Then the left-hand side of the preceding equation

was greater than zero, whereas the right-hand side was less or equal to zero. This contra-

diction implies that ∂ l∗/∂T , 0 and completes the proof.

Analogously, the comparative statics properties of the optimal price p∗ can be easily

derived from relationship (1). Since p¼ (l0/l)1/1 is strictly decreasing in l, ∂p∗/∂Z and

∂l∗/∂Z have the opposite sign, where Z ¼ m, T, Cm, c, a, b. These arguments lead to

the following analogue of Proposition 3.

Proposition 4 Suppose that f(m).1 2 1/1. Then the optimal service price p∗

determined by the first-order condition (12) is affected by the model parameters in the

following manner:

(a) p∗ is strictly decreasing in price elasticity 1 for p∗ ≥ 1 and log p∗ , 1/(1 2 1);

(b) p∗ is strictly increasing in potential demand l0 for ∂ log l∗/∂ log l0 , 1;
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(c) p∗ is strictly decreasing in service processing rate m;

(d) p∗ is strictly increasing in the length of working period T;

(e) p∗ is strictly increasing in CM cost Cm and unit operating cost c;

(f) p∗ is strictly increasing in the scale parameter a and shape parameter b of facility

lifetime distribution.

Proof

Properties (c)–(f) immediately follow from Proposition 3 and the price–demand relation-

ship (1). For property (a), observation of the price–demand relationship (1) leads to 1log

p∗ ¼ log l0 2 log l∗ and partial differentiation with respect to 1 on both sides of the pre-

ceding equation yields (1/p)(∂p∗/∂1) ¼2log p∗2 (1/l∗)(∂l∗/∂1). Hence, as a result of

Proposition 3(a), ∂p∗/∂1 , 0 if p∗ ≥ 1 and log p∗ , 1/(1 2 1). This proves property

(a). Finally, for property (b), partial differentiation with respect to l0 on both sides of

1log p∗ ¼ log l0 2 log l∗ yields

1

p

∂p∗

∂l0

= 1

l0

− 1

l∗
∂l∗

∂l0

= 1

l0

1 − ∂ log l∗

∂ logl0

( )
.

Applying Proposition 3(b), this proves property (b).

Propositions 3 and 4 have the following managerial implications for the qualitative

behaviors of the optimal service demand l∗

(a) For optimal demand l∗ sufficiently large such that log(l0/l∗) , 1/(1 2 1), an

increase in price elasticity 1 indicates that customers are more price sensitive.

Hence the service firm would reduce service price to encourage customer

demand to make more profits. On the other hand, for optimal demand l∗ suffi-

ciently small such that log(l0/l∗) . 1/ (1 2 1), a decrease in price elasticity 1

indicates that customers are less price sensitive. Hence the service firm would

raise service price to discourage customer demand to make more profits.

(b) An increase in potential demand l0 indicates that the market expands. Hence the

service firm would accordingly reduce service price to encourage customer

demand to make more profits.

(c) An increase in service processing rate m corresponds to a decrease in facility usage

per customer served, and thus it leads to lower marginal maintenance cost. To

make more profits, the service firm would prefer more customers served and

thus would reduce service price.

(d) Since the service facility is deteriorating, marginal maintenance cost increases

over time and this trend continues as the length of working period T increases.

To avoid higher marginal maintenance cost, the service firm would prefer fewer

customers served and thus would raise service price.

(e) An increase in CM cost Cm (or unit operating cost c) corresponds to an increase in

marginal cost. To avoid higher marginal cost, the service firm would prefer fewer

customers served and thus would raise service price.

(f) Since a larger scale parameter a (or shape parameter b) corresponds to a higher (or

steeper) increasing failure rate, the service facility will commit more failures and

thus will incur more maintenance costs. To trade off maintenance costs for profits,

the service firm would prefer fewer customers served to decrease facility failures

and thus would raise service price.
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Numerical examples

In this section, numerical examples are presented to illustrate the realized quantitative

effects of parameter variations on the optimal pricing policy and profits. The numerically

quantitative results will serve as complements to the theoretically qualitative aspects in

Comparative statics analysis.

Before numerical exploits, we recall some relevant points of the profit model that are

essential to numerical manipulations: (a) the service demand and facility deterioration are

specified by Equations (1) and (2) respectively; and (b) the maximal expected profit is

realized at the optimal demand rate given by Equation (13).

To make the numerical results more concise for discussion, several model parameters

are fixed in this section: scale parameter of facility lifetime distribution a ¼ 3.5, mean

service processing rate m ¼ 100, potential customer arrival rate l0 ¼ 60, length of

working period T ¼ 1, and facility setup cost Cp ¼ 0.2, where the time unit is week

and the monetary unit is $1000. The resulting optimal service prices and the corresponding

maximal expected profits are compared under various shape parameters (b ¼ 2, 2.5, 3),

price elasticity (1 ¼ 1.2, 1.4, 1.6), minimal repair costs (Cm ¼ 1.0, 1.1, 1.2), and unit oper-

ating costs (c ¼ 0.10, 0.15, 0.20). The numerical manipulations are carried out by

Wolfram Mathematicaw. The subsequent numerical results summarized in Tables 1–3

provide the following observations.

Table 1. Effects of parameter variations for b ¼ 2 and various combinations of 1, Cm, and c.

1 Cm c p∗ l∗ p (p∗)

1.2 1.0 0.10 1.27 44.86 49.90
0.15 1.47 37.79 47.84
0.20 1.69 32.06 46.10

1.1 0.10 1.31 43.20 49.65
0.15 1.51 36.63 47.66
0.20 1.72 31.26 45.97

1.2 0.10 1.35 41.72 49.42
0.15 1.55 35.59 47.49
0.20 1.76 30.53 45.84

1.4 1.0 0.10 0.93 66.52 49.36
0.15 1.03 57.70 46.26
0.20 1.14 50.07 43.57

1.1 0.10 0.96 63.59 48.83
0.15 1.06 55.47 45.85
0.20 1.17 48.40 43.26

1.2 0.10 0.99 61.01 48.33
0.15 1.09 53.48 45.48
0.20 1.19 46.88 42.97

1.6 1.0 0.10 0.82 83.08 50.62
0.15 0.88 73.08 46.72
0.20 0.96 64.16 43.30

1.1 0.10 0.84 79.03 49.80
0.15 0.91 69.86 46.08
0.20 0.98 61.63 42.80

1.2 0.10 0.87 75.49 49.05
0.15 0.93 67.01 45.49
0.20 1.01 59.37 42.33
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(1) Service price p∗ increases (customer demand l∗ decreases) as the shape parameter

b of the facility lifetime distribution increases. This indicates that the service firm

should charge a higher service price provided the facility has a steeper increasing

failure rate. Hence service price should be raised to discourage customer demand.

(2) Service price p∗ decreases (customer demand l∗ increases) as the price elasticity 1

increases. This indicates that the service firm should charge a lower service price

provided the customers are more price sensitive. Hence service price should be

reduced to encourage customer demand.

(3) Service price p∗ increases (customer demand l∗ decreases) as the minimal repair

cost Cm increases. This indicates that the service facility with a higher minimal

repair cost should serve fewer customers to reduce facility failures. Hence

service price is raised to discourage customer demand.

(4) Service price p∗ increases (customer demand l∗ decreases) as the unit operating

cost c increases. This indicates a consequence of the trade-off between operating

costs and service revenues. Hence service price is raised to discourage customer

demand.

The procedure of sensitivity analysis can be similarly conducted on other model

parameters a, l0, m, and T, which also affect the optimal pricing policy as described in

Proposition 3. The quantitative results of the presented sensitivity analysis are informative

Table 2. Effects of parameter variations for b = 2.5 and various combinations of 1, Cm, and c.

1 Cm c p∗ l∗ p(p∗)

1.2 1.0 0.10 1.46 38.16 49.36
0.15 1.62 33.69 47.56
0.20 1.80 29.68 45.98

1.1 0.10 1.50 36.90 49.14
0.15 1.66 32.73 47.40
0.20 1.84 28.96 45.86

1.2 0.10 1.54 35.78 48.94
0.15 1.69 31.86 47.25
0.20 1.87 28.30 45.75

1.4 1.0 0.10 1.12 51.28 47.41
0.15 1.20 46.70 44.96
0.20 1.28 42.36 42.73

1.1 0.10 1.15 49.35 46.96
0.15 1.23 45.09 44.60
0.20 1.31 41.04 42.45

1.2 0.10 1.18 47.65 46.56
0.15 1.26 43.66 44.28
0.20 1.34 39.85 42.19

1.6 1.0 0.10 1.00 59.88 47.01
0.15 1.05 55.24 44.13
0.20 1.11 50.75 41.48

1.1 0.10 1.03 57.46 46.36
0.15 1.08 53.15 43.60
0.20 1.14 48.96 41.05

1.2 0.10 1.05 55.33 45.78
0.15 1.10 51.29 43.12
0.20 1.16 47.36 40.65

The Service Industries Journal 15



for the service firm to adjust its original optimal pricing policy according to parameter

variations.

Conclusion

This paper deals with the pricing policies of services with considerable facility mainten-

ance costs under log-linear service demand and Weibull facility lifetime. Under the model

assumptions, a mathematical profit model of the service firm is developed and

investigated.

Theoretical implications

The most important theoretical finding in this paper is the existence of a unique optimal

pricing policy. As the facility lifetime has an increasing failure rate and the service

demand is price elastic, it is intuitive that the marginal maintenance cost is increasing

in customer arrival rate. Therefore, the conditions of optimality indicate a trade-off

between service revenues and maintenance costs.

It is also found from the mathematical expression that the expected number of facility

failures in this intermittently operated service system is greater than the one in the continu-

ously operated environment. This finding is a consequence of system risk. Because

Table 3. Effects of parameter variations for b = 3 and various combinations of 1, Cm, and c.

1 Cm c p∗ l∗ p(p∗)

1.2 1.0 0.10 1.60 34.07 48.99
0.15 1.74 30.95 47.36
0.20 1.89 27.94 45.89

1.1 0.10 1.64 33.07 48.80
0.15 1.78 30.14 47.22
0.20 1.93 27.30 45.78

1.2 0.10 1.68 32.19 48.62
0.15 1.81 29.41 47.08
0.20 1.96 26.72 45.68

1.4 1.0 0.10 1.27 43.13 46.16
0.15 1.33 40.29 44.07
0.20 1.40 37.46 42.13

1.1 0.10 1.30 41.73 45.78
0.15 1.36 39.06 43.76
0.20 1.43 36.40 41.88

1.2 0.10 1.32 40.49 45.44
0.15 1.39 37.96 43.48
0.20 1.46 35.45 41.64

1.6 1.0 0.10 1.14 48.53 44.84
0.15 1.18 45.82 42.48
0.20 1.23 43.09 40.26

1.1 0.10 1.17 46.87 44.31
0.15 1.21 44.31 42.04
0.20 1.25 41.74 39.88

1.2 0.10 1.19 45.40 43.84
0.15 1.23 42.98 41.63
0.20 1.28 40.55 39.54
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customer arrivals and service times are stochastic, the service facility faces higher

uncertainty under the intermittent operation. This explains the origin of the additional

system risk.

Finally, the condition that characterizes the optimal pricing policy is found to be

moderately sophisticated. This complexity is due to the presence of facility maintenance

costs and the intrinsic properties of an intermittently operated service system. This

suggests us to find the optimal policy by numerical methods rather than by closed-form

expression.

Managerial implications

Pricing is a powerful weapon to attract customers. However, more customers do not

necessarily bring more profits to the service firm. The findings of this study suggest

that, as the service system is subject to facility maintenance costs, the system manager

should examine the bidirectional relationship between customer demand and facility

deterioration to determine the service price.

This study also suggests that the system manager should be aware of the changes of

service demand, service restrictions, cost structure, scale/shape of facility lifetime, etc.

The sensitivity analysis shows the impacts of parameter variations on the optimal

pricing policy and indicates that the service price should be adjusted to reflect the

changes of business environment.

Limitations and future research

We will discuss several limitations in the present study and, in the meanwhile, provide

suggestions to extend the present framework. First, customer arrivals are assumed to be

governed by a homogeneous Poisson process. However, they might fluctuate from time

to time. Therefore, a nonhomogeneous Poisson demand would be more appropriate

under this nonstationary condition. By employing a time-dependent demand, our model

can be extended and the original static pricing problem turns into a dynamic pricing

problem.

Second, CM cost is assumed to be fixed. However, CM cost might increase as facility

deterioration gets worse over time. Therefore, a variable CM cost would be more flexible.

The most practical approach is to use a linear CM cost of the form a + bx, where a,b.0.

In this cost function, a and b, respectively, denote the fixed cost and variable cost of a CM

action, and x might represent the cumulative operating time of the service facility.

Third, the presence of strategic customers is not considered. The customers might have

avoid-the-crowd or follow-the-crowd behavior. Customers who want to reduce the time

spent in the system would turn away to avoid the crowd when the waiting line is long.

This phenomenon gives a suggestion to adopt the notion of actual arrival rate to amend

the original arrival rate. In terms of technicalities, the arrival rate can be obtained by con-

sidering the probability of customer balking that is dependent on the length of the waiting

line. For a high-quality service whose value is indicated by the length of the waiting line,

customers would accept the information signaled by the crowd and longer waiting lines

would be formed. However, a long waiting line implies more waiting time. This herd be-

havior shows a need to consider a framework in which customers choose priority levels to

be purchased.

Finally, the effect of waiting room capacity is ignored. When waiting room capacity is

small, many customers are lost even if they are willing to pay the price. On the other hand,
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when the capacity is large, the incurred capacity costs are not deserved. By adding a

decision variable denoting waiting room capacity to the original service demand, customer

sensitivity to waiting room capacity could be well reflected. Besides, capacity costs could

be incorporated into the profit model to help evaluate the investment on waiting room

capacity. This discussion inspires an investigation on joint policies of service price and

waiting room capacity.
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