The association between dietary protein and serum phosphate level on chronic hemodialysis patients

Lin WC¹, Jin MY², Chen TH³, Yang SH^{1,4}

¹School of Nutrition and Health Sciences, Taipei Medical University ²Department of Nutrition, Wanfang Hospital ³Department of Internal Medicine, Wanfang Hospital ⁴Nutrition research center, Taipei Medical University Hospital

I ntroduction

Dietary phosphorus always exists with protein food. To have daily protein intake above 1.2 g/kg to achieve the K/DOQI recommends may conflict with phosphorus restriction on chronic hemodialysis (CHD) patients.

O bjective

To evaluate the association between dietary protein and serum phosphate level on CHD patients.

S ubjects and Methods

Eighty three subjects were recruited from CHD patients in Wanfang Hospital in 2010. We collected demographic data, anthropometric and laboratory measurements over 6 months and conducted knowledge, attitude and practice (KAP) questionnaires to evaluate subjects' awareness of adequate nutrition, dietary phosphorus and food choice.

Table1. Comparison of KAP scores between younger and older subjects (n=73).

	score	Younger (n = 39)	Older (n = 34)	p			
Knowledge score	20	10.9± 0.7*	5.6± 1.0	0.001			
Attitude score	40	28.9± 1.6*	13.2± 2.7	0.000			
Practice score	40	20.4± 1.2	19.7± 1.5	0.678			
Total score	100	60.2± 3.0*	38.5± 4.2	0.000			
Values are expressed as mean \pm SE. Values with different superscripts are							

significantly different at p < 0.05 by Student's *t* test.

R esults and Discussion

Younger CHD patients has higher knowledge and attitude scores, but no good compliance (table1). Over 6 months, protein intake (nPCR) increased significantly and maintained nutritional status (includes GNRI and serum albumin), while elevated serum phosphate and potassium levels (table 2). Serum phosphate and Ca \times P level significantly correlated with nutritional parameters (includes total protein level, albumin and protein intake). Most of processed foods are enriched with phosphorus and potassium. Subjects with poor food choice of high-protein food may lead to improper control of serum phosphate and potassium.

C onclusion

High protein with lower phosphorus food choice is important for controlling serum phosphate level among CHD patients. We suggest that fresh and high biological value (HBV) protein food should be substituted for processed food.

Table3. Correlation of serum phosphate and calcium phosphate product (Ca \times P) and univariate variables, adjust age and sex.

product (ou x i) unu u		ibics, adjust age	unu sex.	
	Serum phosphate		Ca × P		
	r	р	r	р	
Total protein	0.15*	0.032	0.19*	0.006	
Albumin	0.23*	0.001	0.32*	0.000	
GNRI	0.27*	0.000	0.35*	0.000	
nPCR	0.24*	0.001	0.26*	0.000	
1/1	1.12 10				

Values are correlation coefficients and *p* value. GNRI, geriatric nutritional risk index; nPCR, normalized protein catabolic ration. Values with different superscripts are significantly different at p < 0.05 by using partial correlation.

|--|

	Subjects (n=83)						n	
	Baseline	Month1	Month2	Month3	Month4	Month5	Month6	ρ
BUN, mg/dL	76.2 ± 2.3 ^c	79.8 <u>+</u> 2.2 ^b	82.3 ± 2.1 ^b	85.9 ± 2.2ª	84.2 ± 2.3 ^{ab}	84.7 ±2.2 ^{ab}	84.4 ± 2.2 ^{ab}	0.000
Cr, mg/dL	11.5 ± 0.3 ^{bc}	11.4 ±0.3 ^b	11.5 ± 0.3 ^b	12.1 ±0.3 ^a	11.5 ± 0.3 ^b	11.7 ±0.3 ^b	11.3 ± 0.3 ^b	0.002
UA, mg/dL	8.7 ± 0.8	-	-	7.9 ± 0.1	-	-	8.1 ±0.2	0.376
TP, g/dL	6.6 ± 0.1	-	-	6.6 ± 0.1	-	-	6.6 ± 0.1	0.228
Albumin, g/dL	3.8 ± 0.0^{b}	3.7 ±0.0 ^b	3.8 ± 0.0 ^{ab}	3.8 ± 0.0 ^{ab}	3.8 ± 0.0 ^{ab}	3.9 ±0.0ª	3.8 ± 0.0 ^{ab}	0.122
GNRI	95.6 ± 0.8 ^b	95.1 <u>+</u> 0.9 ^b	95.9 ± 0.9 ^{ab}	96.2 <u>±</u> 0.9 ^a	95.4 ± 0.9 ^{ab}	96.9 <u>+</u> 0.8 ^a	96.3 ± 0.8 ^{ab}	0.130
nPCR, g/kg	1.06 ± 0.03 ^b	-	-	1.14 ±0.03 ^a	-	-	1.12 ±0.04 ^a	0.009
TG, mg/dL	182 ± 14ª	-	-	172 ± 14 ^{ab}	-	-	159 ± 13 ^b	0.064
TC, mg/dL	159 ± 4	-	-	160 ± 4	-	-	162 ± 5	0.847
HGB, mg/dL	10.0 ± 0.2 ^b	10.1 ±0.1 ^{ab}	10.3 ± 0.2 ^{ab}	10.3 ± 0.1ª	10.3 ± 0.1ª	9.9 ±0.2 ^b	10.0 ± 0.1 ^b	0.006
Ferritin, ng/mL	641 ± 57ª	-	-	602 <u>±</u> 60	-	-	582 ± 55 ^b	0.084
Ca, mg/dL	9.0 ± 0.1 ^b	9.1 <u>+</u> 0.1ª	9.1 ± 0.1ª	8.9 ± 0.1 ^b	9.1 ± 0.1 ^b	8.8 <u>+</u> 0.1°	8.9 ± 0.1 ^{bc}	0.000
P, mg/dL	5.2 ± 0.1 ^b	5.3 <u>+</u> 0.2 ^{ab}	5.3 ± 0.2 ^{ab}	5.6 ± 0.2 ^{ab}	5.7 ± 0.2 ^{ab}	5.7 <u>+</u> 0.2 ^a	5.6 ± 0.2 ^{ab}	0.164
$Ca \times P$, mg ² /dL ²	47.1 ± 1.4	48.6 <u>+</u> 1.7	48.8 ± 1.6	50.2 ± 1.6	51.6 ± 1.9	51.0 ±1.7	50.3 ± 1.8	0.382
K, mEq/L	4.7 ± 0.1 ^b	4.7 <u>+</u> 0.1 ^b	4.7 ± 0.1 ^b	4.8 ± 0.1 ^b	5.0 ± 0.1ª	4.9 ±0.1ª	4.8 ± 0.1 ^b	0.000
Kt/V	1.70 ± 0ª	1.67 ±0.03 ^{ab}	1.62 ± 0.04 ^{ab}	1.64 ± 0.03 ^b	1.63 ± 0.03 ^{ab}	1.61 ±0.04 ^b	1.64 ± 0.04 ^b	0.076

Values are expressed as mean \pm SE. BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid; BMI, body mass index; TP, total protein; GNRI, geriatric nutritional risk index; nPCR, normalized protein catabolic ratio; TG, triglyceride; TC, total cholesterol; HGB, hemoglobin; Ca, calcium; P, phosphate; Ca × P, calcium phosphate product; K, potassium. Values with different superscripts are significantly different at *p* < 0.05 by one-way repeated measures ANOVA.