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Abstract

IL-3 induces tyrosine phosphorylation of both JAK1 and JAK2. JAK1 and JAK2 are protein
tyrosine kinases involved in the regulation of cell proliferation, differentiation, and survival.
These proteins may play akey role in mediating the effects of the cytokine, IL-3, on
hematopoietic cells. However, it is not clear which regions of JAK1 or JAK2 are associated with
IL-3 receptor. In the work reported here, we demonstrated that JAK2 and JAK1 are preassociated
with the IL-3 receptor alpha and beta subunits, respectively. Furthermore, we constructed the
several plasmids of JAK1 or JAK2 deletion mutants for in-vitro translation and GST pull-down
assay. Inthe GST pull-down assay, JAK 1 associates with 1L-3 receptor beta subunit viathe JH7—
JH3 domains. Deletion of JAK2 JH7—6 domains impaired the association of 1L-3 receptor alpha
subunit with JAK2. Finally, whether these regions affect the IL-3 signal transduction and IL-3-
dependent cell activity will be studied.
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I ntroduction

The cytokine, interleukin-3 (IL-3), regulates cell proliferation, differentiation, and anti-
apoptosis of hematopoietic cells.*? IL-3 performs these functions through specifically binding to
the IL-3 receptor a subunit (IL-3Ra) and recruiting the b subunit to form a heterodimer.®* While
the a subunit is specific to each cytokine, the b subunit, known as b common (bc), is shared by
two other cytokines, IL-5 and granul ocyte-macrophage colony-stimulating factor (GM-CSF). The
mouse has two highly homologous b subunits, bc and IL-3Rb (b, ;), while humans have one type
of b subunit (bc). IL-3R belongs to the cytokine receptor superfamily. Although IL-3R does not
possess kinase activity, it likely associates with and requires transducing signals from the
cytoplasmic Janus tyrosine kinases (JAKS).” IL-3 has been shown to induce tyrosine
phosphorylation of JAK1 and JAK2.°® The JAKs (JAK 1, JAK2, JAK3, and Tyk?2) are a family of
nonreceptor tyrosine kinases.? One downstream effect of JAK activation is the phosphorylation of
signal transduction and activation of transcription (STAT) proteins. The phosphorylated STAT
proteins then translocate into the nucleus and regulate the transcription of specific genes.®® In
addition to STAT, phosphatidylinositol 3-kinase (PI-3K)/Akt, and mitogen-activated protein
kinase (MAPK) pathways are aso activated by JAK.'* STAT, Akt, and MAPK have been
shown to regulate cell proliferation and anti-apoptosis activities,”>®

The interaction between JAK2 and single subunit cytokine receptors [i.e. erythropoietin
receptor (EPOR), growth hormone receptor, and prolactin receptor (PRL-R)] as well as
heterodimeric receptors (IFNgR and interleukin-5 receptors) has been extensively characterized.
1920 The membrane proximal region of cytokine receptors that interact with JAK2 contains a
highly conserved motif termed Box 1, which is formed by a proline-rich sequence located 6-10
amino acids after the transmembrane domain.?>* However, which regions of JAKs interact with
IL-3 receptor are now unclear. We describe the unassociated state of I1L-3Ra and b subunitsin the
absence of 1L-3. JAK2 and JAK 1 are preassociated with the IL-3 receptor apha and beta subunits,
respectively. Following IL-3 stimulation, JAK2 proteins are associated with the IL-3 receptor
beta subunit and JAK 1 proteins are associated with the IL-3 receptor alpha subunit. Furthermore,

we identify the regions of JAK1 and JAK2 binding to IL-3 receptor.
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Results
JAK?2 and JAK1interact with IL-3Ra and b, , respectively

Previous reports have revealed that JAK is preassociated with the cytokine receptor.??
Whether JAK1 and JAK2 can aso interact with the IL-3 receptor was examined here. IL-3
starved Ba/lF3 cells were stimulated with or without IL-3 and cell lysates were prepared. Cell
lysates were then immunoprecipitated with anti-IL-3Ra or -b, , antibodies followed by Western
blotting with anti-JAK1 and anti-JAK2 antibodies. As shown in Figure 1, JAK2 was
coimmunoprecipitated with IL-3Ra whereas JAK1 was coimmunoprecipitated with b, ,,
regardless of IL-3 stimulation. However, JAK2 was coimmunoprecipitated with b, ; and JAK1

was coimmunoprecipitated with IL-3Ra, only after 1L-3 stimulation. These results indicate that

JAK2 and JAK1 interact constitutively with IL-3Ra and b, _,, respectively.
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Constructs of glutathione Stransferase fusion proteins and JAK s deletion mutants

cDNA constructs encoding the glutathione S transferase (GST) fusion protein for the entire
IL-3Ra and bc intracellular domains were obtained by inserting the polymerase chain reaction
(PCR) fragments of IL-3Ra (GST-IL-3RalCD) and bc (GST-bc) into the pGEX2T vector. These
GST fusion proteins were expressed in Escherichia coli, and were induced with IPTG for 1 to 4

hours. Furthermore, these GST fusion proteins were affinity-purified on glutathione-Sepharose



(Figure 2).
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The plasmids of JAK1 and JAK deletion mutants were constructed by restricted enzymes

digestion or PCR (Figure 3).
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Tomap theregionsof JAK1 and JAK2 for binding to IL-3 receptor

The interaction of GST fusion proteins to the deletion mutants of JAK1 and JAK2 were
examined. Equal amounts of GST fusion proteins were incubated with lysates (input data ont
shown) of in vitro transcription/transglation. After adding sample buffer, the precipitates bound to
GST fusion proteins were eluted by boiling and examined with autoradiograph (Figure 4). These
data showed that the JH7-JH3 domains of JAK1 and the JH7-6 domains of JAK2 are essential for

binding to IL-3 receptor beta and al pha subunit, respectively.
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In this study, In this study, we demonstrated that IL-3Ra and bc were not associated in the
absence of IL-3, and that the bc would associate with IL-3Ra only after IL-3 stimulation (Figure
1), consistent with a recent report.?® Based on our results, we propose the following mechanism
for the simultaneous activation of JAK1 and JAK2 proteins by IL-3. Prior to IL-3 induction,
JAK?2 and JAK1 proteins exist in a preassociated state with IL-3Ra and b, _,, respectively (Figure
1). When IL-3 binds to IL-3Ra, alarge functional complex of JAK2-IL-3Ra and JAK1-b, ;is
formed. JAK1, JAK2, and b, _;within this functional complex undergo tyrosine phosphorylation,
thereby triggering further downstream signaling that resultsin cell proliferation and in the
suppression of apoptosis. Our proposed model is consistent with the single chain cytokine
receptor (i.e., receptors for growth hormone and erythropoietin) model that predicts that the JAK2
protein is activated by homodimeric complexes of cytokine receptor-JAK2 and cytokine receptor-
JAK 2 after cytokine binding to its receptor.** The physical interaction between the IL-3 receptor
and the JAKs proteins, demonstrated in our system (Figure 1), is consistent with that seen in the
IL-5 system, in which JAK2 and JAK 1 proteins were shown to be constitutively associated with
IL-5Ra and bc, respectively.* Other studies have also reported ligand-induced JAK 2 binding to
the b subunit in the IL-3 or GM-CSF system.?? Our study, however, provides an explanation for
the mechanism by which IL-3 induces heterodimerization of IL-3Ra with the b, ,, enabling

JAK2-IL-3Ra to interact with the b,_,. Similarly, JAK1-b, , has the opportunity to interact with

5



the a subunit (Figure 1).

Recent work by Lacronique et a has revealed that fusion proteins that contain the
oligomerization domain of TEL and the tyrosine kinase domain of JAK1, JAK2, JAK3 or TYK2
have similar characteristics and can effectively substitute for the survival and mitogenic signals
of IL-3.22 That is, the tyrosine kinase domain [JH1 (JAK homology) domain] from the four
members of the JAK family is not specific in IL-3 signaling. In addition to the JH1 domain, the
JAK family contains the JH2-JH7 domain. The sequence of the JH2 domain is similar to that of
the JH1 kinase domain, except for the lack of kinase activity. JH2 has been suggested to have a
negative regulatory effect on JAK2 kinase activity. Deletion of JH2 from JAK 2 congtitutively
activated the cytokine receptor, independent of cytokine, but signal transduction activity was
lower than that of wild-type JAK 2 stimulated by cytokine.” There is much sequence variation
within the N-terminal JH3-JH7 domains of the four members of the JAK family. These domains
have been implicated in receptor association® and in controlling the kinase activity of JAK3,*
thus implying that they could be involved in controlling JAK kinase activity and in signal
transduction. Therefore, the JH2-JH7 domains may be responsible for the functional specificity of
JAK, which warrants further studies on the analyses of the functions of wild-type JAK.

The GST pull down assay (Figure 4) is one time experiment, we will further confirm this
data. Future studiesin our laboratory will analyze whether the binding regions of JAKs (JAK1
and JAK?2) to IL-3 receptor play anegative role on the initiation of 1L-3 receptor signaling and/or

cell proliferation.
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hematopoietic diseases (A number of malignant myeloid and lymphoid

leukemias respond to IL3 for example.)



