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Introduction

Data that obtained from observation of a phenomenon over time are extremely common in
biological sciences. We observe the electrical activity of the heart at millisecond intervals. The
fluctuations in mammalian blood flow and pressures. The oscillation of the intratubular pressure
in rats. The list of areas in which time series are observed and analyzed is plenty. In general, the
purpose of time series analysis are two-fold: to understand or model the mechanism that gives
rise to an observed pattern and to predict or estimate future values of a series based on the pass
history of that series. (Bassingthwaighte et al. 1994; Kaplan and Glass 1995; Abarbanel 1996;
Kantz and Schreiber 1997; Mandelbrot 1999; West 1999; Bunde et al. 2002; Doukhan et al.
2003)

In Fractals, the numerical categorization of the complexity of a fractal process has been
developed by Mandelbrot (1967). He introduced the concept of the fractal dimension. Since then
fractal dimension has been used to described numerous complicated phenomenon: the paths of
finely divided particles in a suspension of continuous medium (Brownian motion), growth paths
of cells, the structure of coast lines, snow flakes, branching bronchial tree, the fluctuation over
time in human blood flows and pressure, ictal electroencephalograph signals, sinus electrical
rhythm. Nevertheless, it is still in the stage susceptible to transformation, and its ultimate
importance as an investigative tool in physiology is not fully established (Butler et al, 1994).

For example, the accuracy of the measured contour length of a fractal line improves as the
measuring stick gets smaller. The best estimate of dimension (D) therefore should be determined
from the measurements obtained using the smaller measurement segments. Since in most
circumstances the optimal length of subdivision of the measuring stick is not known, the use of
longer data segments it is often suggested (Camastra, et al, 2002).

Furthermore in a real system, there will be measurement errors, and these errors will become
more important as the scale of measuring device decreases. In addition, depending on the noise
characteristics, as the scale of measuring device becomes smaller, the effect of the random noise
superimposed on a fractal signal will also become obvious. Katz & George (1985, 1987) showed
that the estimated Fractal dimension for a population of cell growth paths was approximately
lognormally-distributed. Standard statistics could be done on the logarithms of the Hurst
coefficient [log (D)]. With this measure, trails of biological movement in two-dimensional plan
can be analyzed to determine the likelihood before and after experimental interventions. However,
due the differences in the nature of fractal process such measure has not yet being applied to
observations made over time.

The beat-to-beat variation in the heart rate of humans is generated by a complex process and
displays inhomogeneous, nonstationary extremely irregular temporal organization. (Golodberger
et al. 1985, 1992) The physiological mechanisms of cardiac control expected to result from both
intrinsic and extrinsic factors operating at different time scales or resolution have not been
identified clearly.( Meyer M 2003) Studies have showed that the complex dynamics of the
cardiac rthythm could be resulted from an autonomous low-dimensional deterministically chaotic
system (Lefebvre et al. 1993;Yamamoto et al. 1993; Kanters et al. 1994; Sugihara et al. 1996;
Poon and Merrill 1997). Heart rate is high-dimensional and its variability often modified by



variables such as autonomic outflow, respiration, arterial blood gases sensory feedback, and
various hormones. For any deterministic systems the entire system’s dynamics may be describe
by a single systemic variable, however the feasibility of this approach for noisy biological time
series has not been fully studied.

Persistent vegetative state (PVS) resulting from traumatic or non-traumatic brain injuries is
a state of eyes-open unconsciousness with sleep—wake cycles in which the patients are incapable
of awareness of themselves or their environment for at least 1 month (The Multi-Society Task
Force on PVS, 1994; Zeman, 1997). Due to damage to the cerebral hemispheres, PVS patients
show no evidence of sustained, reproducible, purposeful, or voluntary behavior responses to
visual, auditory, tactile, or noxious stimuli, and also show no language comprehension or
expression (The Multi-Society Task Force on PVS, 1994). Because PVS patients have complete
or partial preservation of the hypothalamic and brainstem autonomic functions, they have

spontaneous respiration (The Multi-Society Task Force on PVS, 1994; Zeman, 1997).

Study Purpose

Current study proposes a novel dimension estimation process, based on spectral analysis for
short-period fractal time series. A moving window technique, along weighted moving average
optimized with least mean square algorithm, will be implemented for the estimation of fractal
exponent. Particular effort is addressed in the accelerated convergent effects of weighted moving
average and that of least mean square algorithm for selection of proper signal length for without
compromise on prediction power for minimum step change in signal complexity.

In addition to the surrogate data, we also test the clinical feasibility of this proposed method.
Points of interest will include: (1) to analyze the spontaneous breathing patterns of PVS patients
and normal control volunteers, (2) to assess the effects of inhalation of 100% O, on their
respiratory instability, (4) to apply the proposed method on RR-interval from ECG data within
PVS group and between PVS and normal control ones for the assessment of their corresponding
autonomic function. Comparison will also be performed in linear and nonlinear aspects of the

time series, as well as between cardiac and respiratory autonomic influence for PVS.
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Material and Method

Numerical Simulation on Fractal Analysis:

Current study focuses on the effects of the length of signal and of the introduction of a
analysis window on the accuracy of estimate of H. Extension of signal range is implemented with
length from 2° to 2'* numbered time points and with value of dimension from 0.1 to 0.9.
Dimension estimates from various window sizes are computed. Optimized weighted window 1is

used for the acceleration convergence of estimates when small analysis widow is used.

Fractal Signal Generation: As reported by Mandelbrot and Wallis, Fractional Brownian motion

and its derivative frequently show a broadband 1/f-like power spectrum. Mandelbrot and Wallis
presented a simple definition of the Fractal Brownian motion with spectral theory: white noises
are all its repeated integrals and derivatives having a spectral density of the form 1/f*, where f is
the frequency, and 3 an integer. Because determining H or D from a fractal Brownian motion is
difficult [8,16], the fractional Brownian noise is needed, which is the successive difference
between points of an fractional Brownian motion. Fractional Brownian noises are defined as
having a spectral density of the same form, with B a non-integer fraction, hence the name
fractional (Brownian) nose, § = 2H - 1. The fractional dimension related to Has D=E + 1 - H,

where E is the Euclidean dimension. [5].

Signal Synthesis: The Spectrum synthesis method (SSM) will be used in current study to generate

fractal signal with known dimension. The SSM synthesis method generates the fractal signal by

computing the back-transform of power spectrum described by a power law function:

|A|2 =1/ f# (3-1)

where | A| is the magnitude of the spectral density at frequency f, with an exponent equal to § =

2H + 1. Given the desired H, with magnitude of the spectral density |A| set to equal a constant

for all frequencies, and the phases drawn randomly from a uniform distribution, the time series of
the fractional Brownian motion can then be produced by performing the inverse transform of the
Fourier spectrum. The imaginary part of the time series is often ignored.

Estimation of Hurst coefficients. The square of the amplitude from the Fourier transform of a pure




fractional Brownian motion is known to follow a power law function. [5] When the logarithm of
the amplitude of the individual frequency components of the signals vs. the logarithm of the
frequency is plotted for fractal signals, the slope of the relationship between the two components
can be a straight line with slope -3 [ voss, 1988, 39] When the derivative is taken from
fractional signals, B is reduced by two. Thus, for fractional Brownian noise, fBn 3 is expected
to be

B=2H -1 (3-2)
The fractal dimension relates to H as

D= E+1—-Hoo (3-2)

, where E is the Euclidean dimension (Voss et al., 1988)
Since frequency axis was no longer in linear scale in the log-log plot between power spectrum of
signals and the frequency, as logarithm of frequency increases density of data points increases.
With least-square algorithm, a straight line was fitted through these data points. Fractal dimension
was calculated by inserting the slope of the straight line into equation 3-2 and 3-3.

Moving Window Analysis (MMA): Prior to the application of dimension estimation, various

sizes of the analysis window (Wa) will be selected. For each length L of a fractal time series,
one analysis windows Wn = 2i, i =35, 6,..., 12, is selected first, the estimation start from first
numbered point and advance through the entire length of the data with a overlap of L-4 time
points, which yields an estimated sequence, h (1), h 2), ....., h (k).

Weighted Moving Average (WMA): Given the a set of weights namely, w(1),w(2), ....,w(n) for the

resulting sequence of dimension estimates, ﬁ(l), ﬁ(Z), ..... , ﬁ(k), weighted average is defined

by:
A (k) = w(n)h(k)+w(n—Dh(k =1) +..cocvereennes w(h(k —n-1) (3-3)
= W AWN D ot W) e

, where n is number of the weight used and k is number of dimension estimates sequence from
MMA method. The weighted moving average are computed by shifting a window of size n over
a preset overlap distance |, where | < n <k. The mean square error (MSE) is calculated with the

formula:

) n
[h(®) - H(®)]
MSE = o 3-4
P Sl
Different window size is computed along with its corresponding MSE. Value of n with least value
of MSE is choosing for subsequent analysis.

Analysis of Clinical Feasibility : Subjects: Thirty PVS patients from three nursing homes will be

included in this study as the experimental group. Following criteria are used for the screening the
test subjects: (1) unaware of self and environment for at least 12 months due to severe brain
damage from various etiologies; (2) completely bedridden, not able to take care of themselves

and to communicate with other persons; (3) their Glasgow coma scale (Shah, 1999) was <8 and
their Barthel Index Score (Mahoney and Barthel, 1965) was <20; (4) had been able to breathe
room air on their own through the tracheostomy tube and free form ventilator support 113

for at least 6 months with acceptable blood gases data; (5) clinically and hemodynamically stable,
and having no fever and (6) free from heart failure, pulmonary and renal diseases, and signs of

increased intracranial pressure or infection. Another 15 age- and sex-matched normal volunteers



are also included as the control group during the same study period and were free from
cardiopulmonary, neuromuscular and renal diseases, and without histories of smoking and
congestive heart failure. These normal volunteers are instructed regarding the study procedure,
but will be blinded to the study design. For all subjects, sedatives, hypnotics and narcotics will be
discontinued for at least 8 h prior to the study. Appropriate institutional review board approval
will be obtained and written informed consent is obtained from the patient’s legal guardian and
from the control subjects.

Data analysis: Power spectral analysis of the breath-by-breath data is re-sampled at evenly

spaced time intervals of 8ms by a linear interpolation. The mean value of each set of data was
subtracted from the time series data to remove the direct current component. A Hanning window
in the time domain is used to attenuate the leakage effect. The time series data is appended by
zero valued samples to the size of 262144 (218) data points. The resulting power spectra have a
theoretic resolution of 4.77x10—4 Hz. The graph of the power spectrum will be smoothed by a
moving average filter set at a size of 15. The density values of total power and
very-low-frequency (VLF) power were calculated as the integral under the power spectral
function with a frequency range between 0.001-0.5 Hz (oscillatory cycle duration = 1000-2 s or
0.06-30 cycles/min) and 0.003—0.04 Hz (oscillatory cycle duration = 333-25 s or 0.18-2.4
cycles/min), respectively. The frequency range of VLF power was chosen to cover the possible
range of cycle duration of OB reported previously (Bruce and Daubenspeck, 1995; Hall et al.,
1996; Khoo, 1999; Ponikowski et al., 1999).

Continuous ECG monitoring and heart rate analysis: Thirty-minutes continuous ECG recordings

will be obtained for analysis in all subjects using a holter type deivce (Del Mar FlashCorder
Holter Recorder, Model 485) recording standard leads CM1 and CMS. The following
time-domain indices were evaluated: standard deviation of all RR intervals, 24 h triangle index,
standard deviation of 5-min mean RR intervals and the root mean square of differences of
successive RR intervals. Frequency domain (spectral analysis) are undertaken by modified
spectral analysis. This process operated on data of 30 min segments of each experiment condition.
Time periods where there are excessive movements will be excluded. Spectral plots will also be
used to identify the low-frequency (LF) component (0.03 to 0.14 Hz) and the high-frequency (HF)
component (0.18 to 0.40 Hz). Indices are expressed in normalized units (n.u.), or the relative

percentage compared to the total oscillatory power.

Results and Discussion

Although, dimension estimates from time series generated by SSM has been shown to be
Gaussian-like for estimation process such as dispersional analysis. However, to further rule out
the possibility for differences when method such as spectral analysis is applied, we’ve created
and tested the data set with 200 fractal time series generated by SSM, each with selection of
length N, (N = 32, 64, 128, 256, 51 2,1024, 2048, 4096, 8192), and roughness H, (H = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). To test for its normality, we’ve calculated the kurtosis and
skewness for these 3600 fractal time series. When lumped together the data from the calculated
skewness where input dimensionality is the same but with different signal length are lumped

together, the mean calculated skewness level will all be negative and will be slightly lower than



but different not as much as that of the standard level for normal distribution (5, = 0). On the
other hand, when the calculated kurtosis are subjected to the same lumping process, mean level
for the kurtosis are mostly leptokurtic, and are slightly greater than but different not as much as
that of the standard level for normal distribution (5, = 3). Please see Table 1 for the listing of
detailed values for the mean and SD of the lumped kurtosis and skewness at each input
complexity level. Therefore, it is proposed that SSM along with spectral analysis can create
fractal time series with Gaussian-like estimated dimension distribution, and the normal statistics
will be applied in the subsequent study.

With the same range of H’s and N”s as there is in the test for Gaussian normal distribution,
Table 2 lists the mean estimated dimension and its standard deviation for 200 trials via spectral
analysis. From the plot between input dimension level and the mean estimated dimension, there
is an over-estimation tendency in the range

N Paints 0.1 0.2 03 0.4 0.s 0.6 0.7 0.8 0.9

. . . .
Where lnput dlmenSI()n leVel H S 1S>0'5 32 01035 02004 02858 04188 04891 06076 07149 08234 09371

0.2069 0.2005 02122 0.2054 02005 0.2110 02083 0.1939 0.1976

It is then being under-estimated in the

64 0.0872 0.1838 0.2877 0.4084 05071 06187 0.7185 08214 09216
) . 0.1541 0.1612 0.1504 0.1325 0.1382 0.1438 01433 01331 0.1324
range where H’s is =0.5. Also, when
118 0.0976 0.1544 0.2987 0.4087 05128 0.6046 0.7045  0.8081 09111
. . 0.0953 01040 0.1002 0.0946 01022 0.0574 01018 0.0934 0.0946
looking at the each theoretic level and
156 0.0964 0.1936 0.3014 04051 04528 05597 0.7040  0.7988 0.9057

: : : 0.0642 0.0730 0.0695 0.0714 0.0700 0.0764 00734 0.070% 0.0710

compare it with the corresponding
512 0.1030 0.1858 0.302% 0.3943 0.5027 0.6023 0.7042  0.7980 0.9027
0.0503 00496 0.0524 0.0515 0.0457 0.0451 00434 00448 0.0304

estimated dimension level; the deviation

. . . . . 1024 00984 02029 03018 04024  0S018 0027 07009 07982  0.9074

from the thCOI‘etIC dlmenswnahty iS more 00357 00353 00373 00341 00357 00334 00337 0034 00321
2048 00982 02000 02992 04015 05019 06005 07004 08026  0.9000

prominent for signal with shorter data 00262 00241 00251 00289 00240 00239 00216 00241 00255
4096 00997 02023 03007 04014 05012 06004 07002 08018  0.9009

lel’lgth than that Of the longer ones. 00171 00170 00169 00177 00178 00178 00161 00160 0.0174
.o 5192 01010 01996 03010 04012 04998 06011 06993 08007  0.8997

Standard deviation on the other hand 00114 00124 00127 0O0LI0 00117 00127 00120 00126 00118

shows a much different profile.

The power of the test, defined as the statistical probability that a test will produce a
significant difference at a given significant level, is one measure often used to demonstrate the
existence of a difference before and after a clinical treatment. However, implementation of such
test can work equally well whether the difference that can be detected under a given sample size
is the point of interest, or to estimate the sample size required to present a statistical difference
between group means is the main focus. With the group and standard error from Table 2, Table 3
presents the model estimated sample sizes required to detect a difference of size AH, with 90%
power and under 5% significant level for equally sized samples. From this table it is suggested

that the sample size required to detect a given difference, say 0.01 in mean of AH , will decrease
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sample sizes for the sample power and significant level is observed between dimension estimates
from input fractal time series with negative near-neighbor correlation and that with the one which
possesses positive near-neighbor correlation.

The use of moving windows with overlaps serves two purposes in current study; one is to
increase the sampling number while maintaining the temporal correlation between successive
time windows, and the others are to detect transient changes occurred not in mean signal level or
absolute amplitude, but in signal complexity. Attached figure plots the mean dimension estimates
and its associated error bar over the indicated data size in log of 2 with theoretic input dimension
H = 0.75 (or D = 1.25), from 200 trials in each data length (top trace), and from the result of
applying a moving window across fractal signal with 8192 points (bottom trace). As is expected,
when smaller data length is used, reduction in frequency resolution will cause bias in power
density estimate, which is shown here in both
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To validate for the proposed method, two fractal time series were created from SSM with
step difference in signal complexity each with 8192 time points. The first half of the surrogated
sequence is with dimension H = 0.6 and is also referred to as the low dimension sequence (LDS),
and the second half is with dimension H = 0.7 and is referred to as the high dimension sequence
(HDS). Both are adjusted to have zero mean and then connected in succession from LDS to HDS.
Prior to the wavelet based analysis, dimension of the combined data series is being calculated via
the application of moving window with bin size from 16 points to 4096 points in power of 2, with
sift-in distance equal to 4 time points for all window sizes. Wavelet decomposition set at eleventh
wavelet scales is then performed, with the DWT algorithm implemented using the Daubechies
compactly supported othonormal wavelet transform method of order one. At last, the
identification of time location of the joint fBn signal is done by reconstruction using the IDWT
algorithm only from the 11" scales of the approximated coefficients of the wavelet decomposed
dimension sequence. In addition, the effect of the addition of a Gaussian white noise with
signal-to-noise ratio from -20 dB ~ 30 dB is also being tested.

Right figure shows the time evolution for the

moving window predicted (in solid line) versus the

Flin (utdary LRt

wavelet modified (in dished line) dimension estimates for

a joint time series created with SSM and each with 8192 e e w0 we e e e
time points. Although transition from LDS to HDS is e — O
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local fluctuation, identification of the exact step location e s 0 ww da W v



is compromised. One the hand, wavelet predicted dimension sequence shows a clear step-like
profile, from which the level of LDS and HDS, the step location and its co responding change in
signal complexity can be calculated.

It is observed that smaller analysis window predicts better with less difference between the
model-predicted step position and the exact time location. Moreover, this difference is equals to
its corresponding bin size of the applied analysis window. This implies that although lager
window do perform better in dimension estimation with less variability if moving window
technique alone is the used for the dimension estimation, but will add more delay to the predicted
step position when further combined with wavelet transform. Moreover, even if all wavelet
predicted level for LDS and HDS are higher than the input level, the predicted error calculated
from the difference between LDS and HDS decreases as window size increases, and will cross
over from positive (over-estimated) to negative (under-estimated) at bin size greater or equal to
1024 points.

Attached figure shows the effect of adding a Gaussian random noise to the wavelet predicted
dimension for LDS and HDS at various SNR level. It is noted that there is no appreciable

difference between estimated LDS (circle) to HDS (diamond) level until the noise level reaches

-15 dB or more. Although the difference between the T ——
predicted LDS and HDS dose increases as SNR level e
increases from -10dB and up, however, the SNR hasto | /9-

reach 10 dB or more before the predicted difference in
complexity level become reasonable close with error
that is 10% or less to the theoretic level. On the other

end of the spectrum, when noise level is at -20dB or

less, the test series is completely corrupted and the
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signal is therefore biased toward random noise.

The physical and clinical characteristics of the experimental groups are listed in the
following table. As shown, PVS-OB™ group had a significantly higher baseline systolic and
diastolic blood pressure and a significantly lower PETCO2, as compared to the control group;
these three parameters in the PVS-OB™" group did not differ from those in the PVS-IB™ group.

Other characteristics did not vary among the three study groups.

Physical and clinical characteristics of the three study groups

Study groups Control (n = 15) PVS-IB (n=15) PVS-OB (n=12)
Age (years) 61.27+12.56 57.27+15.59 69.25+15.10
Sex (male/female) 8/7 9/6 7/5

BMI (kg/m?) 22.64+3.08 22374274 21.954+2.80
Vegetative duration (months) - 82.60 £61.73 74.334+36.13
Glasgow coma scale Clear 7.33+£0.72 7.17+£0.83
Tracheostomy tube ID - 7.13+055 7.4240.90
Systolic blood pressure (mmHg) 116.67+11.57 122.004£21.34 130.17 £ 18.557
Diastolic blood pressure (mmHg) 69.20 +8.27 75.77+13.44 79334 10.66
Pulse rate (min—1) 71.80+9.36 79.21 +£11.35 80.84+£13.47
Oxygen saturation (%) 96.59+1.39 96.31+£1.07 95.32+1.63
End-tidal CO, (Torr) 43.13+3.38 39.99 +4.38 37.204+£5.22°

**Persistent vegetative state (PVS), irregular (IB) and oscillatory breathing (OB) represent breathing patterns with increases in non-periodic and
periodic variations, respectively, as a manifestation of respiratory instability

For the analysis of autonomic control, we used a decomposition algorithm based on the DWT



where the R-R intervals from ECG were first re-sampled at 2 Hz by a cubic spline interpolation,
then, decomposed into six wavelet scales with the sampling period set at 2 second. This resulted
in the following set of bandlimits for the filter bank:0.6957, 0.3478, 0.1739, 0.0870, 0.0435, and
0.0217Hz. The DWT algorithm was implemented using the Daubechies compactly supported
orthonormal wavelet transform method, with an order of12. Noted also that to decompose the
cardiovascular fluctuations, three frequency bands were used which include; the very
low-frequency (VLF, centered near 0.04 Hz), low-frequency (LF, near 0.10 Hz) which is effected
both by sympathetic and parasympathetic activity, and high-frequency (HF, above 0.15 Hz) that
is associated with parasympathetic activity. Wavelet decomposition of the RR variability signal
from representative subject is shown in the bottom left figure. Vertical from top to bottom, X(n)
represents the original RR intervals, approximated composition at scale 6 (J = 6) , and detailed
composition at scale 6 and followed by detailed composition from scale 5 to scale 1., as well as
instantaneous power estimates for the VLF, LF, and HF components of the RR variability signal

for the same subject (bottom right).
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