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Introduction 

Data that obtained from observation of a phenomenon over time are extremely common in 
biological sciences. We observe the electrical activity of the heart at millisecond intervals. The 
fluctuations in mammalian blood flow and pressures. The oscillation of the intratubular pressure 
in rats. The list of areas in which time series are observed and analyzed is plenty. In general, the 
purpose of time series analysis are two-fold: to understand or model the mechanism that gives 
rise to an observed pattern and to predict or estimate future values of a series based on the pass 
history of that series. (Bassingthwaighte et al. 1994; Kaplan and Glass 1995; Abarbanel 1996; 
Kantz and Schreiber 1997; Mandelbrot 1999; West 1999; Bunde et al. 2002; Doukhan et al. 
2003) 
 In Fractals, the numerical categorization of the complexity of a fractal process has been 
developed by Mandelbrot (1967). He introduced the concept of the fractal dimension. Since then 
fractal dimension has been used to described numerous complicated phenomenon: the paths of 
finely divided particles in a suspension of continuous medium (Brownian motion), growth paths 
of cells, the structure of coast lines, snow flakes, branching bronchial tree, the fluctuation over 
time in human blood flows and pressure, ictal electroencephalograph signals, sinus electrical 
rhythm.  Nevertheless, it is still in the stage susceptible to transformation, and its ultimate 
importance as an investigative tool in physiology is not fully established (Butler et al, 1994).  
 For example, the accuracy of the measured contour length of a fractal line improves as the 
measuring stick gets smaller. The best estimate of dimension (D) therefore should be determined 
from the measurements obtained using the smaller measurement segments. Since in most 
circumstances the optimal length of subdivision of the measuring stick is not known, the use of 
longer data segments it is often suggested (Camastra, et al, 2002). 
 Furthermore in a real system, there will be measurement errors, and these errors will become 
more important as the scale of measuring device decreases. In addition, depending on the noise 
characteristics, as the scale of measuring device becomes smaller, the effect of the random noise 
superimposed on a fractal signal will also become obvious. Katz & George (1985, 1987) showed 
that the estimated Fractal dimension for a population of cell growth paths was approximately 
lognormally-distributed. Standard statistics could be done on the logarithms of the Hurst 
coefficient [log (D)]. With this measure, trails of biological movement in two-dimensional plan 
can be analyzed to determine the likelihood before and after experimental interventions. However, 
due the differences in the nature of fractal process such measure has not yet being applied to 
observations made over time.  

The beat-to-beat variation in the heart rate of humans is generated by a complex process and 
displays inhomogeneous, nonstationary extremely irregular temporal organization. (Golodberger 
et al. 1985, 1992) The physiological mechanisms of cardiac control expected to result from both 
intrinsic and extrinsic factors operating at different time scales or resolution have not been 
identified clearly.( Meyer M 2003) Studies have showed that the complex dynamics of the 
cardiac rhythm could be resulted from an autonomous low-dimensional deterministically chaotic 
system (Lefebvre et al. 1993;Yamamoto et al. 1993; Kanters et al. 1994; Sugihara et al. 1996; 
Poon and Merrill 1997). Heart rate is high-dimensional and its variability often modified by 



variables such as autonomic outflow, respiration, arterial blood gases sensory feedback, and 
various hormones. For any deterministic systems the entire system’s dynamics may be describe 
by a single systemic variable, however the feasibility of this approach for noisy biological time 
series has not been fully studied.  

Persistent vegetative state (PVS) resulting from traumatic or non-traumatic brain injuries is 
a state of eyes-open unconsciousness with sleep–wake cycles in which the patients are incapable 
of awareness of themselves or their environment for at least 1 month (The Multi-Society Task 
Force on PVS, 1994; Zeman, 1997). Due to damage to the cerebral hemispheres, PVS patients 
show no evidence of sustained, reproducible, purposeful, or voluntary behavior responses to 
visual, auditory, tactile, or noxious stimuli, and also show no language comprehension or 
expression (The Multi-Society Task Force on PVS, 1994). Because PVS patients have complete 
or partial preservation of the hypothalamic and brainstem autonomic functions, they have 
spontaneous respiration (The Multi-Society Task Force on PVS, 1994; Zeman, 1997). 

 

Study Purpose 

Current study proposes a novel dimension estimation process, based on spectral analysis for 
short-period fractal time series. A moving window technique, along weighted moving average 
optimized with least mean square algorithm, will be implemented for the estimation of fractal 
exponent. Particular effort is addressed in the accelerated convergent effects of weighted moving 
average and that of least mean square algorithm for selection of proper signal length for without 
compromise on prediction power for minimum step change in signal complexity. 

In addition to the surrogate data, we also test the clinical feasibility of this proposed method. 
Points of interest will include: (1) to analyze the spontaneous breathing patterns of PVS patients 
and normal control volunteers, (2) to assess the effects of inhalation of 100% O2 on their 
respiratory instability, (4) to apply the proposed method on RR-interval from ECG data within 
PVS group and between PVS and normal control ones for the assessment of their corresponding 
autonomic function. Comparison will also be performed in linear and nonlinear aspects of the 
time series, as well as between cardiac and respiratory autonomic influence for PVS.  
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Material and Method 

Numerical Simulation on Fractal Analysis: 

Current study focuses on the effects of the length of signal and of the introduction of a 
analysis window on the accuracy of estimate of H. Extension of signal range is implemented with 
length from 25 to 212 numbered time points and with value of dimension from 0.1 to 0.9. 
Dimension estimates from various window sizes are computed. Optimized weighted window is 
used for the acceleration convergence of estimates when small analysis widow is used. 

Fractal Signal Generation: As reported by Mandelbrot and Wallis, Fractional Brownian motion 
and its derivative frequently show a broadband 1/f-like power spectrum. Mandelbrot and Wallis 
presented a simple definition of the Fractal Brownian motion with spectral theory: white noises 
are all its repeated integrals and derivatives having a spectral density of the form 1/fβ, where f is 
the frequency, and β an integer. Because determining H or D from a fractal Brownian motion is 
difficult [8,16], the fractional Brownian noise is needed, which is the successive difference 
between points of an fractional Brownian motion. Fractional Brownian noises are defined as 
having a spectral density of the same form, with β a non-integer fraction, hence the name 
fractional (Brownian) nose, β = 2H - 1. The fractional dimension related to H as D = E + 1 - H, 
where E is the Euclidean dimension. [5].   

Signal Synthesis: The Spectrum synthesis method (SSM) will be used in current study to generate 
fractal signal with known dimension. The SSM synthesis method generates the fractal signal by 
computing the back-transform of power spectrum described by a power law function: 

βfA /12 =       (3-1) 

where ⏐ A⏐ is the magnitude of the spectral density at frequency f, with an exponent equal to β = 

2H + 1. Given the desired H, with magnitude of the spectral density A  set to equal a constant 

for all frequencies, and the phases drawn randomly from a uniform distribution, the time series of 
the fractional Brownian motion can then be produced by performing the inverse transform of the 
Fourier spectrum. The imaginary part of the time series is often ignored.  
Estimation of Hurst coefficients. The square of the amplitude from the Fourier transform of a pure 



fractional Brownian motion is known to follow a power law function. [5] When the logarithm of 
the amplitude of the individual frequency components of the signals vs. the logarithm of the 
frequency is plotted for fractal signals, the slope of the relationship between the two components 
can be a straight line with slope -β [ voss, 1988, 39]  When the derivative is taken from 
fractional signals, β is reduced by two.  Thus, for fractional Brownian noise, fBn β is expected 
to be 

 β = 2H  - 1………………………………………..(3-2)      
The fractal dimension relates to H as 

 D =  E + 1 – H…………………………………..(3-2)      
, where E is the Euclidean dimension (Voss et al., 1988) 
Since frequency axis was no longer in linear scale in the log-log plot between power spectrum of 
signals and the frequency, as logarithm of frequency increases density of data points increases. 
With least-square algorithm, a straight line was fitted through these data points. Fractal dimension 
was calculated by inserting the slope of the straight line into equation 3-2 and 3-3. 
Moving Window Analysis (MMA):  Prior to the application of dimension estimation, various 
sizes of the analysis window (Wa) will be selected.  For each length L of a fractal time series, 
one analysis windows Wn = 2i, i = 5, 6,...., 12, is selected first, the estimation start from first 
numbered point and advance through the entire length of the data with a overlap of L-4 time 
points, which yields an estimated sequence, ĥ (1), ĥ (2), ....., ĥ (k).  
Weighted Moving Average (WMA): Given the a set of weights namely, w(1),w(2), ….,w(n) for the 
resulting sequence of dimension estimates, ĥ (1), ĥ (2), ....., ĥ (k), weighted average is defined 
by: 
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, where n is number of the weight used and k is number of dimension estimates sequence from 
MMA method.  The weighted moving average are computed by shifting a window of size n over 
a preset overlap distance l, where l < n <k. The mean square error (MSE) is calculated with the 
formula: 
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Different window size is computed along with its corresponding MSE. Value of n with least value 
of MSE is choosing for subsequent analysis.  
Analysis of Clinical Feasibility : Subjects: Thirty PVS patients from three nursing homes will be 
included in this study as the experimental group. Following criteria are used for the screening the 
test subjects: (1) unaware of self and environment for at least 12 months due to severe brain 
damage from various etiologies; (2) completely bedridden, not able to take care of themselves 
and to communicate with other persons; (3) their Glasgow coma scale (Shah, 1999) was ≤8 and 
their Barthel Index Score (Mahoney and Barthel, 1965) was <20; (4) had been able to breathe 
room air on their own through the tracheostomy tube and free form ventilator support 113 
for at least 6 months with acceptable blood gases data; (5) clinically and hemodynamically stable, 
and having no fever and (6) free from heart failure, pulmonary and renal diseases, and signs of 
increased intracranial pressure or infection. Another 15 age- and sex-matched normal volunteers 



are also included as the control group during the same study period and were free from 
cardiopulmonary, neuromuscular and renal diseases, and without histories of smoking and 
congestive heart failure. These normal volunteers are instructed regarding the study procedure, 
but will be blinded to the study design. For all subjects, sedatives, hypnotics and narcotics will be 
discontinued for at least 8 h prior to the study. Appropriate institutional review board approval 
will be obtained and written informed consent is obtained from the patient’s legal guardian and 
from the control subjects. 
Data analysis: Power spectral analysis of the breath-by-breath data is re-sampled at evenly 
spaced time intervals of 8ms by a linear interpolation. The mean value of each set of data was 
subtracted from the time series data to remove the direct current component. A Hanning window 
in the time domain is used to attenuate the leakage effect. The time series data is appended by 
zero valued samples to the size of 262144 (218) data points. The resulting power spectra have a 
theoretic resolution of 4.77×10−4 Hz. The graph of the power spectrum will be smoothed by a 
moving average filter set at a size of 15. The density values of total power and 
very-low-frequency (VLF) power were calculated as the integral under the power spectral 
function with a frequency range between 0.001–0.5 Hz (oscillatory cycle duration = 1000–2 s or 
0.06–30 cycles/min) and 0.003–0.04 Hz (oscillatory cycle duration = 333–25 s or 0.18–2.4 
cycles/min), respectively. The frequency range of VLF power was chosen to cover the possible 
range of cycle duration of OB reported previously (Bruce and Daubenspeck, 1995; Hall et al., 
1996; Khoo, 1999; Ponikowski et al., 1999).  
Continuous ECG monitoring and heart rate analysis: Thirty-minutes continuous ECG recordings 
will be obtained for analysis in all subjects using a holter type deivce (Del Mar FlashCorder 
Holter Recorder, Model 485) recording standard leads CM1 and CM5. The following 
time-domain indices were evaluated: standard deviation of all RR intervals, 24 h triangle index, 
standard deviation of 5-min mean RR intervals and the root mean square of differences of 
successive RR intervals. Frequency domain (spectral analysis) are undertaken by modified 
spectral analysis. This process operated on data of 30 min segments of each experiment condition. 
Time periods where there are excessive movements will be excluded. Spectral plots will also be 
used to identify the low-frequency (LF) component (0.03 to 0.14 Hz) and the high-frequency (HF) 
component (0.18 to 0.40 Hz). Indices are expressed in normalized units (n.u.), or the relative 
percentage compared to the total oscillatory power. 

 
Results and Discussion 

Although, dimension estimates from time series generated by SSM has been shown to be 
Gaussian-like for estimation process such as dispersional analysis. However, to further rule out 
the possibility for differences when method such as spectral analysis is applied, we’ve created 
and tested the data set with 200 fractal time series generated by SSM, each with selection of  
length N, (N = 32, 64, 128, 256, 51 2,1024, 2048, 4096, 8192), and roughness H, (H = 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). To test for its normality, we’ve calculated the kurtosis and 
skewness for these 3600 fractal time series. When lumped together the data from the calculated 
skewness where input dimensionality is the same but with different signal length are lumped 
together, the mean calculated skewness level will all be negative and will be slightly lower than 



but different not as much as that of the standard level for normal distribution ( 1β  = 0). On the 
other hand, when the calculated kurtosis are subjected to the same lumping process, mean level 
for the kurtosis are mostly leptokurtic, and are slightly greater than but different not as much as 
that of the standard level for normal distribution ( 2β  = 3). Please see Table 1 for the listing of 
detailed values for the mean and SD of the lumped kurtosis and skewness at each input 
complexity level. Therefore, it is proposed that SSM along with spectral analysis can create 
fractal time series with Gaussian-like estimated dimension distribution, and the normal statistics 
will be applied in the subsequent study. 

With the same range of H’s and N”s as there is in the test for Gaussian normal distribution, 
Table 2 lists the mean estimated dimension and its standard deviation for 200 trials via spectral 
analysis.  From the plot between input dimension level and the mean estimated dimension, there 
is an over-estimation tendency in the range 
where input dimension level H’s is＞0.5. 
It is then being under-estimated in the 
range where H’s is ≦0.5. Also, when 
looking at the each theoretic level and 
compare it with the corresponding 
estimated dimension level; the deviation 
from the theoretic dimensionality is more 
prominent for signal with shorter data 
length than that of the longer ones. 
Standard deviation on the other hand 
shows a much different profile.  

The power of the test, defined as the statistical probability that a test will produce a 
significant difference at a given significant level, is one measure often used to demonstrate the 
existence of a difference before and after a clinical treatment. However, implementation of such 
test can work equally well whether the difference that can be detected under a given sample size 
is the point of interest, or to estimate the sample size required to present a statistical difference 
between group means is the main focus. With the group and standard error from Table 2, Table 3 
presents the model estimated sample sizes required to detect a difference of size HΔ , with 90% 
power and under 5% significant level for equally sized samples.  From this table it is suggested 
that the sample size required to detect a given difference, say 0.01 in mean of HΔ , will decrease 
from more 7000 in number with data of 
length 32 points, and goes down to 25 as 
data length increases up to 8192 points. 
Meanwhile, for the same data length, say 
128 points, the sample size required to 
detect a difference with the same 
statistical power in group mean will 
decrease from 1575 in number, and goes 
down to 25 in number as the difference of 

HΔ  increase from 0.01 to 0.08. However, 
no appreciable difference in the required 



sample sizes for the sample power and significant level is observed between dimension estimates 
from input fractal time series with negative near-neighbor correlation and that with the one which 
possesses positive near-neighbor correlation. 

The use of moving windows with overlaps serves two purposes in current study; one is to 
increase the sampling number while maintaining the temporal correlation between successive 
time windows, and the others are to detect transient changes occurred not in mean signal level or 
absolute amplitude, but in signal complexity. Attached figure plots the mean dimension estimates 
and its associated error bar over the indicated data size in log of 2 with theoretic input dimension 
H = 0.75 (or D = 1.25), from 200 trials in each data length (top trace), and from the result of 
applying a moving window across  fractal signal with 8192 points (bottom trace). As is expected, 
when smaller data length is used, reduction in frequency resolution will cause bias in power 
density estimate, which is shown here in both 
cases as the elevated mean and SD. However, 
when the moving widow process is taking less 
than 256 points out from a total of 8192 points (or 
6.25%) in figure 7(b), mean estimated dimension 
will continue to increase and goes up to twice the 
input level as bin size decreases further down to 
32 points, whereas only small oscillatory changes 
are observed in mean estimated level for normal 
sequence.  

To validate for the proposed method, two fractal time series were created from SSM with 
step difference in signal complexity each with 8192 time points. The first half of the surrogated 
sequence is with dimension H = 0.6 and is also referred to as the low dimension sequence (LDS), 
and the second half is with dimension H = 0.7 and is referred to as the high dimension sequence 
(HDS). Both are adjusted to have zero mean and then connected in succession from LDS to HDS.  
Prior to the wavelet based analysis, dimension of the combined data series is being calculated via 
the application of moving window with bin size from 16 points to 4096 points in power of 2, with 
sift-in distance equal to 4 time points for all window sizes. Wavelet decomposition set at eleventh 
wavelet scales is then performed, with the DWT algorithm implemented using the Daubechies 
compactly supported othonormal wavelet transform method of order one. At last, the 
identification of time location of the joint fBn signal is done by reconstruction using the IDWT 
algorithm only from the 11th scales of the approximated coefficients of the wavelet decomposed 
dimension sequence. In addition, the effect of the addition of a Gaussian white noise with 
signal-to-noise ratio from -20 dB ~ 30 dB is also being tested. 

Right figure shows the time evolution for the 
moving window predicted (in solid line) versus the 
wavelet modified (in dished line) dimension estimates for 
a joint time series created with SSM and each with 8192 
time points.  Although transition from LDS to HDS is 
observed for the moving window predicted sequence near 
time location k≧8000, however, due to its relatively high 
local fluctuation, identification of the exact step location 



is compromised. One the hand, wavelet predicted dimension sequence shows a clear step-like 
profile, from which the level of LDS and HDS, the step location and its co responding change in 
signal complexity can be calculated.  

It is observed that smaller analysis window predicts better with less difference between the 
model-predicted step position and the exact time location. Moreover, this difference is equals to 
its corresponding bin size of the applied analysis window. This implies that although lager 
window do perform better in dimension estimation with less variability if moving window 
technique alone is the used for the dimension estimation, but will add more delay to the predicted 
step position when further combined with wavelet transform. Moreover, even if all wavelet 
predicted level for LDS and HDS are higher than the input level, the predicted error calculated 
from the difference between LDS and HDS decreases as window size increases, and will cross 
over from positive (over-estimated) to negative (under-estimated) at bin size greater or equal to 
1024 points.  

Attached figure shows the effect of adding a Gaussian random noise to the wavelet predicted 
dimension for LDS and HDS at various SNR level. It is noted that there is no appreciable 
difference between estimated LDS (circle) to HDS (diamond) level until the noise level reaches 
-15 dB or more. Although the difference between the 
predicted LDS and HDS dose increases as SNR level 
increases from -10dB and up, however, the SNR has to 
reach 10 dB or more before the predicted difference in 
complexity level become reasonable close with error 
that is 10% or less to the theoretic level. On the other 
end of the spectrum, when noise level is at -20dB or 
less, the test series is completely corrupted and the 
signal is therefore biased toward random noise.  
 

The physical and clinical characteristics of the experimental groups are listed in the 
following table. As shown, PVS-OB** group had a significantly higher baseline systolic and 
diastolic blood pressure and a significantly lower PETCO2, as compared to the control group; 
these three parameters in the PVS-OB** group did not differ from those in the PVS-IB** group. 
Other characteristics did not vary among the three study groups. 
 

**Persistent vegetative state (PVS), irregular (IB) and oscillatory breathing (OB) represent breathing patterns with increases in non-periodic and 
periodic variations, respectively, as a manifestation of respiratory instability 
 

For the analysis of autonomic control, we used a decomposition algorithm based on the DWT 



where the R-R intervals from ECG were first re-sampled at 2 Hz by a cubic spline interpolation, 
then, decomposed into six wavelet scales with the sampling period set at 2 second. This resulted 
in the following set of bandlimits for the filter bank:0.6957, 0.3478, 0.1739, 0.0870, 0.0435, and 
0.0217Hz. The DWT algorithm was implemented using the Daubechies compactly supported 
orthonormal wavelet transform method, with an order of12. Noted also that to decompose the 
cardiovascular fluctuations, three frequency bands were used which include; the very 
low-frequency (VLF, centered near 0.04 Hz), low-frequency (LF, near 0.10 Hz) which is effected 
both by sympathetic and parasympathetic activity, and high-frequency (HF, above 0.15 Hz) that 
is associated with parasympathetic activity. Wavelet decomposition of the RR variability signal 
from representative subject is shown in the bottom left figure. Vertical from top to bottom, x(n) 
represents the original RR intervals, approximated composition at scale 6 (J = 6) , and detailed 
composition at scale 6 and followed by detailed composition from scale 5 to scale 1. , as well as 
instantaneous power estimates for the VLF, LF, and HF components of the RR variability signal 
for the same subject (bottom right). 

 
 


