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Abstract

The aim of this study was to assess the efficacy hMSC for targeting microscopic tumors and
suicide gene or cytokine gene therapy. Immunodeficient mice were transplanted subcutaneously
(s.c.) with human colon cancer cells of HT-29 Inv2 or CCS line and 3-4 days later intravenously
with “tracer” hMSCs expressing herpes simplex virus type 1 thymidine kinase (HSV1-tk) and
eGFP reporter genes. Subsequently, these tumors were examined for specificity and magnitude of
HSV1-tk*, eGFP" stem cell engraftment and proliferation in tumor stroma by in vivo positron
emission tomography (PET) with [18]F-FHBG. In vivo PET images of tumors growing for 4
weeks demonstrated the presence of HSV1-tk™ tumor stromawith an average of 0.36+0.24 % ID/g
[18]F-FHBG accumulation. At first we assessed the ability of the hMSCs co-implanted with
tumor cells to proliferate inside the growing tumor lesions and contribute to the development of
tumor stroma. In the second group, micro-PET imaging studies confirmed the ability of
intravenously administered tracer hMSCs to migrate to the sites of microscopic tumor lesions,
engraft into these microscopic tumor lesions, and contribute to the development of a significantly
portion of tumor stroma. Similar results were observed in tumors produced from human colon
adenocarcinoma cell line, CCS. In the third group, micro PET images obtained at different days
after s.c. injection of CCS tumor cell demonstrated the initial migration of intravenously
administered hM SCs to the sites of s.c. CCS tumor cell injection. Repetitive microPET imaging
performed at 15 and 27 days after hMSCs injection (18 and 30 days of tumor growth)
demonstrated exponentially increasing [18]F-FHBG accumulation at the sites of s.c. CCS tumor
cell injection which is indicative of hMSCs proliferation and significant contribution to growing
tumor stroma development. At last we obtained tumor tissue samples at the end of a 30-day
imaging study conducted in the third group of animals, and implanted s.c. aseptically minced
tumor fragments of about 2 mm in diameter into the new NOD-SCID mouse recipients and
imaged with [18]F-FHBG four weeks later. The imaging showed the lack of radiotracer uptake
above the body background levels, which is indicative of a very low density or a lack of hMSCs
progeny inside newly developed tumor stroma. We conclude that hM SCs can target microscopic
tumors, and contribute to formation of a significant portion of tumor stroma. PET imaging should
facilitate clinical trandation of stem cell-based anti-cancer gene therapeutic approaches by
providing the means for in vivo nonrinvasive whole body monitoring of trafficking, tumor
targeting, proliferation of HSV1-tk expressing “tracer” hMSCs in tumor stroma. In the further
work, we are going to confirm the in vivo imaging results within situ correlative histochemical,
immuno- fluorescent, and -cytometric analyses. We also want to figure out where were the
hMSCs in tumors and did hM SCs differentiate to other kind of cells.

Key words. human mesenchymal stem cell, herpes simplex virus type 1 thymidine kinase, green
fluorescent protein, positron emission tomography, [18]F-FHBG, noninvasive imaging.
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