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Abstract

This study investigates regional cerebral
blood flow (rCBF) changes in patients
with  Parkinson’s  disease  using
independent component analysis (ICA)
followed by statistical parametric
mapping (SPM). Methods:  *™Tc-
hexaemethyl-propyleneamine oxime
(**™Tc-HMPAO) was used as the CBF
tracer for rCBF measurements. A single

photon emission computerized
tomography  (SPECT) study was
performed on 62 patients with

Parkinson’s disease in various disease
stages, and also on 51 aged-matched
controls. SPECT images were first
spatially normalized to standard space,
concatenated, and then subjected to ICA
decomposition. The resulting image
components were then separated by
logistic regression into two  sets:
disease-related  components, whose
subject weights differenced between
groups and  non-disease  related
components, whose subject weights
exhibited no  group  difference.
Components of each  set
back-projected and
components. The resultant rCBF images
were normalized to the global CBF for
each subject and then analyzed using
SPM to compare the rCBF values
changes between Parkinson’s disease
and control subject. Results: In the
disease-related image subspace, patients
with  Parkinson’s disease exhibited
significantly higher adjusted rCBF in the

were
summed across

subthalamic nucleus, putamen, globus
pallidum, thalamus, brainstem, and
anterior lobe of cerebellum, and
significant  hypoperfusion in  the
supplementary motor plus dorsolateral
prefrontal,  pariteo-occipital  cortex,
insula, and cingulate gyrus. In the
non-disease related image subspace,
very few regions showed a significant
group difference. Using SPM only
without ICA  separation gave
significantly lower peak t value and at a
smaller number of image voxels. Some
of the regions revealed by ICA to be
affected by Parkinson’s disease have not
shown significant changes in previous
HMPAO-SPECT studies, though those
are central to the pathophysiological
model of Parkinson’s disease. Finally,
SVM could correctly classified normal
controls  from  disease patient.
Conclusion: In a HMPAO-SPECT study,
ICA-based separation of normalized

images into  disease-related and
unrelated subspaces revealed more
disease-related brain regions than
applying SPM directly. The

diseased-related regions indicated by
ICA are consistent with the current
pathophysiology in
Parkinson’s disease, though their rCBF
changes in Parkinson’s disease have not
been fully demonstrated by any previous
single functional imaging study. Also,
the SVM classification method could
help clinical doctor diagnosis between
PD and controls. Thus ICA combine
with SVM method provides a new and

model of



more comprehensive method for testing
functional and brain circuit models in
Parkinson’s disease.

Key words: SPECT, Parkinson’s
disease, regional cerebral blood flow,
Independent  component  analysis,

statistical parametric mapping

I fiffer:
IR R o w%m
iy FOR L
[ S A 'ﬁ&‘ﬁ&@‘«@[ j%T— ;t)"
ﬂJé@%' » BRI P AT
e ’?‘/IJJ ST ST AR I
E'?Tfﬁfj s VHDK 4'%‘?}%%@%@%? T
- BRI 51T 6
7 [FAEE ‘Q%ﬂ’? o P
EIffIH] HMPAO Z¥K] - "E"‘liﬁfj .
Vﬁ"ﬁﬁulﬁg’ ~[f H S [ PO AR
e [ o (D (Y 0 A
S o P B R 55
i s ﬂzghﬁyﬁf‘%’z RS
E‘W@ﬁ”‘ ﬁlfﬁ%w’?}j} = F|I'] SPM pi
iﬂiﬁmy@ﬁ fFlrﬁg RAT ”[""'ﬂ‘ 15[[;1 ¢ Tk
e pﬂﬂwwﬁ B
(F SRR A 7 o1 A O A R EOAR
[ SR RLURAY R T R R i A
JD ’ %E'ﬁ‘ﬁ’ﬁwﬁgﬁ Mg R 2
MR 5% %'E”ﬁégﬂﬁﬁ%'mp EE
BOR R BIO E  PEHT
ﬁﬁfjﬁ%@ BT - FPL
N ,“J?Jfﬂflfiéﬁﬁl&’ﬁ ﬁ'%%,lf £ m‘%}[
ke > ZS{P3ET Y] Support Vector
Machine (SVM)3E 55 1-& A R AY
= b2H] > > F|[¥] Receiver Operator
Characteristics (ROCs) curves 76|‘E]§:‘I
(S o fIOB T S AT E
SE AR 9}*‘%%&%@:’"%%‘ ﬁfj‘l&f@‘?ﬁr}’

F&Jfﬁ’ﬂéfﬁff@ »EH] SVM F IS T KR
[AIFFERER e e 53 2 = ’mﬁ%ﬂ
BE o SRR RO T EE]
ROC curves ™ =17 98% » &} ';;ﬁﬂ?»
[ I E RO IR R S e Ry
AL

%g%ﬁ 3 Iﬁ;f;ﬁ)ﬁ ~ Rt
SRR

Introduction

Parkinson’s disease (PD)
common neurodegenerative
with four cardinal motor features:
resting tremor, bradykinesia, cogwheel
rigidity and postural instability.
99mTc-HMPAO  SPECT is a
well-established method of assessing
rCBF. SPECT data have been analyzed
utilizing either Region Of Interest (ROI)
analysis (4), which investigates blood
flow abnormalities in predefined
regions, or using statistical parametric
mapping (SPM), which can generate
images of blood flow abnormalities for
each pixel in the whole brain image(5).
Results of previous reports about rCBF
differences in PD and control have
Independent component
analysis (ICA) is a recently developed
data-driven approach to imaging data
analysis. It has been widely applied to
the analyses of functional
neuroimaging data, including
EEG/MEG, ERP, fMRI (11) and other
biomedical signals. In the previous
literature, ICA methods has been shown
to effectively remove eye-blink
artifacts in ERP study (12) and to

is a
disease

been mixed.



separate artifact components from
fMRI data (11). This study used ICA to
remove the non-disease related SPECT
activity including artifacts and rCBF
unaffected by PD from the data
followed by voxel-based statistic
parametric  mapping (SPM). We
hypothesized that this method would
reveal more areas of significant rCBF
difference in PD.

Finally, most of neuroimage studies
concerning disease-related pattern were
focus on specific regions which came
from their algorithm analysis. Few study
really applied their specific regions to
perform discrimination study between
their disease and controls. Searching
from PubMed web page by the keyword
“discrimination, neuroimage and
Parkinson’s disease”, only one study
addressing this issue (13). Compared
with using neuroimage and Parkinson’s
disease as keyword to search in PubMed
web, there are 26 studies focus on this
topic. There is no study using SPECT or
FDG-PET to perform study concerning
differentiation of normal control from
Parkinson’s disease. The goal behind
this study is to use one of machine
classifiers, Support Vector Machine
(SVM) to classified neuroimage comes
from normal and Parkinson’s disease.
The automatic classification process will
be evaluated in terms of receiver
operator characteristics (ROCs) curves.
This analysis allows us to evaluate the
machine learning classifier in terms of
their discrimination accuracy. These

issues are important to the application of
machine classifiers in PD research and
to clinicians and researchers who would
like to get an understanding of the
classification process and analysis.
Similar approaches may also be helpful
in diagnosing other diseases.

MATERIALS AND METHODS

Subjects
Sixty-two PD  patients and
fifty-one age-matched control subjects

participated in this study, included
previously twenty-seven PD patients
and twenty-four controls in the past
study. Patients were diagnosed with PD
according to the research diagnostic
criteria of Ward and Gibb (14). Then
stage of disease was assessed using the
method of Hoehn and Yahr (15). The
62 PD patients (42 male, 20 female;
mean age of 66.5+ 7 years) were
divided into three groups; six patients
at Hoehn-Yahr stage I, ten at stage I,
and eleven at stage Ill. Patients were
clinically  evaluated using the
motor-unified  Parkinson’s  disease
rating scale (UPDRS) prior to the
SPECT study (16). Patients imaged had
been maintained at least one month on
stable anti-parkinsonian therapy with
optimized clinical benefit. Patients
were  receiving  anti-parkinsonian
therapy including various combinations
of L-DOPA with decarboxylase
inhibitor (carbidopa), anticholinergic
agents, amantadine hydrochloride and



dopamine receptor agonists. Fifty-one
control subjects (15male, 36 female;
mean age of 63.4 + 6 years) were
healthy volunteers without major
neurologic or psychiatric disorder
(including alcoholism, substance abuse,
head trauma with consciousness loss or
cerebral vascular disorder). All subjects
were given information about the
procedure and gave signed informed
consent prior to participating in the
study.
Experimental Protocol

Patients and control subjects were
injected with 740MBqg (20 mCi) of
(99mTc) HMPAO 30 minutes prior to
scanning. The acquisition matrix was
128x128; zoom, 1.5. The
reconstruction of SPECT images was
achieved wusing a filtered back
projection algorithm with a Metz filter
of power 3 and a system resolution of 8
mm intrinsic full width at half
maximum (FWHM), resulting in 80
contiguous 128x128 transaxial image
slices with in-plane resolution of
1.77x1.77 mm and slice thickness of
1.8 mm. Attenuation correction based
on Chang’s method (17) was performed
on each slice, with a uniform
attenuation coefficient of 0.11.
Image Transformation and ICA
Pre-Processing

All images were first converted to
Analyze format from their native image
format using MRIcro software. Each
individual SPECT image was then
re-oriented and spatially normalized to

the standard Montreal National Institute
(MNI) template included in SPM2
http://www.fil.ion.ucl.ac.uk/spm/ using
a 12-parameter affine transformation.
As a result, each subject’s image was
re-sampled into 2x2x2 mm voxels in a
cube with axes right-left,
anterior-posterior, and superior-inferior,
respectively. After spatial normalization,
the individual SPECT images from
normal controls (1~51) and patients
(52~113) were concatenated, forming a
SPECT data matrix, X, with 51 (the
number of subjects) and 79*95*69
columns (the total number of voxels).
ICA decomposition was performed
under FMRLAB. Within FMRLAB, the
off-brain voxels were first removed
based on an image intensity threshold
selected interactively through a graphic
user interface. Then, the
Bell-Sejnowski

information-maximization

(Informax)
algorithm as implemented by Makeig et
al. (18) was used to derive the spatially
maximally independent components.
Independent Component Analysis
Applied to our SPECT data matrix,
X, ICA found an ‘unmixing’ matrix, W,
that decomposed or linearly unmixed
the concatenated SPECT data into a
sum  of  spatially  independent
components, U =W x X, where U was
a matrix of spatially fixed independent
component SPECT images. Since the
unmixing matrix W was invertible, X =
W' x U. The columns of W-1
represent relative signal strengths of the



component map in each of the observed
subject SPECT maps X. That is, the
signal amplitudes in the columns of W™
represent the relative adjusted rCBF
strength of the brain regions recruited
by the corresponding component maps
in each subject image. We expected that
some of the resultant components
would account for the differences in
rCBF between (normal vs PD) groups,
while other components would account
for inter-subject variability in anatomy
or rCBF. After ICA training converged,
we applied logistic regression to the
subject weights for each component,
with a probability threshold of p <
0.001, to find *“disease-related”
components exhibiting a significant
difference between patients (columns
52~113) and controls (columns 1~51).
The remaining components were
considered “non-disease-related”
components. Thus, all the components
were classified into two sets -
“disease-related” or
“non-disease-related”. Components in
these two sets were separately
back-projected and summed to
reconstruct the disease-related and
un-related portions of the individual
subject images.

Data analysis

SPM analysis was perform on both the
raw SPECT images and on the
reconstructed “disease-related” data
pre-processed by ICA
described above. Before processing the
raw data images, each image was

method

spatial normalized using linear and
non-linear parameters as in the ICA
pre-processing step described above.
Then a 3-D Gaussian filter (8 mm
width) was used to smooth each image.
The mean CBF of each image was
scaled to 50 for each subject.
Between-group comparisons (controls
and PD), were performed on a
voxel-by-voxel basis using as general
linear model based on the theory of
Gaussian fields (19,20), within SPM.
The first comparison sought areas of
increased perfusion, the second, areas
of decreased perfusion. The resulting
set of voxel values for each comparison
constituted a statistical parametric map
or SPM{t}. The SPM{t} maps were
then transformed to unit normal
distribution, SPM{z}. In these
between-group comparisons,
significant voxels were defined as those
surviving a probability threshold of p <
0.001 after correction for multiple
comparisons. In evaluating the data
preprocessed by ICA, the two partial
data sets (summing disease-related
components and non-disease related
components respectively) were
submitted to SPM analysis separately
as described above. SPM results on the
raw and ICA preprocessed data were
then overlaid on a normalized MR
image.

Automatic classification base on
SVM

SVM method was used to discriminate
PD from controls base on the image



feature from previously result.

Results:

There was no  significant
difference in age between controls and
patients. In the ICA-preprocessed data,
20 components were classified by
logistic regression as “disease-related”
and 93 components as “non-disease
related”.

In whole image analysis by SPM,
patients with Parkinson’s disease
showed significantly increased adjusted
rCBF in the putamen, globus pallidus,
ventral lateral nucleus, brainstem, and
cerebellum, while decreased adjusted
rCBF was most prominent in the
parieto-temporal and medial frontal
cortex. Significant  affects  of
Parkinson’s disease-related changes in
ICA-preprocessed data were more
extensive. In the “non-diseased related”
component subspace, no area showed
significance difference between groups.
In contrast, in the “disease-related’
component set, Parkinson’s disease
patients showed increased adjusted
rCBF in the bilateral subthalamic
nucleus, globus pallidus and putamen,
ventral lateral and posterior nucleus of
thalamus,  brainstem,  cerebellum,
precentral gyrus, superior and inferior
frontal cortex, as well as hypoperfusion
in the bilateral middle frontal gyrus
(dorsolateral prefrontal cortex),
parieto-occipital ~ cortex,  temporal
cortex, and cingulate gyrus. Details of
the brain areas involved and a

comparison of raw and Compared with
the results from whole image data
analysis, results on ICA- preprocessed
data showed higher peak T values and
more extensive regions of
disease-related rCBF difference(figure
1).
In SVM classification, the sensitivity
and specificity were 92% and 96%
using SVM base on the image feature
in PD in the dataset use in previously
study. The area under receiver operator
characteristics (ROCs) is 99% (figure
2). In this time, we also check the new
dataset ROC and ROC from pool
dataset (previously 51 cases and 62
cases). The ROC of new dataset was
0.98 and pool dataset was 0.99 (figure
2).
Discussion
Regions of rCBF increase in PD
Our data imply that in Parkinson’s
disease, rCBF is increased in the basal
ganglia, thalamus, orbital frontal cortex,
the brainstem, and the cerebellum.
Among these, increased rCBF in the
bilateral putamen, globus pallidum,
thalamus, subthalamic nucleus, and
pons are expected from the basal
ganglia circuit model (2,3) and are
consistent with previous studies using
SPECT and FDG-PET(10,21).
Regions of rCBF decrease in PD

A widely distributed decrease in
rCBF in the cerebral cortex was found
in PD from our result. The involved
included the  posterior
cortex, precuneus,

cortices
parieto-temporal



cingulate, insula, dorsolateral prefrontal

cortex, and supplementary motor cortex.

In addition, the caudate and the medial
dorsal nucleus of the thalamus also
showed decreased rCBF.

The symptomatology in Parkinson’s
disease can be partially explained by a
disturbed cortical-basal
ganglia-thalamic-cortical
activity resuting from degeneration of
dopaminergic nigrostriatal neurons. If
such is the case, a consistent alteration
rates of regional cerebral
metabolism (rCMR) or regional
cerebral blood flow (rCBF) would be
expected. However, up to now, the
findings of rCMR or rCBF changes in
the brain of Parkinson’s disease
patients have been inconsistent. In this
present study, we assess the rCBF
changes between PD patients and
normal controls using Independent
Component  Analysis as  data
preprocessing method. The rCBF
changes in brain various brain areas
shown in this study can well be
incorporated into  the  suggested
pathophysiological model in PD. In
contrast to using SPM alone, the
combination with ICA processing can
reveal significant rCBF changes in
areas that have been largely overlooked
previously.

Conclusion

circuit

of local

Our results show rCBF changes in PD
are consistent with the current model of
pathophysiology in PD. Using SVM
separate PD from controls base on

SPECT image’s feature has good
sensitivity and specificity. Although our
sample data is not large, this method
seems may be helpful in differentiating
PD from health controls. Future
application may be helpful in
differentiating other Parkinson’s plus
syndrome. Further studies such as
increase sample data or detail analysis
of whole steps are needed to verify our
methodology.
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Figure 1. Regional CBF difference between PD and controls. (A). rCBF in controls
higher than PD. (B) rCBF in PD higher than controls.
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# < Independent component analysis (ICA) is a recently developed
data-driven approach to imaging data analysis. This study investigates
regional cerebral blood flow (rCBF) changes in patients with
Parkinson’s disease using independent component analysis (ICA)
followed by statistical parametric mapping (SPM). the SVM
classification method could help clinical doctor diagnosis between PD
and controls. Thus ICA combine with SVM method provides a new
and more comprehensive method for testing functional and brain
circuit models in Parkinson’s disease.
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Medical Image, Image processing algorithms, Medical Decision
support system
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