Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As(+3)- and MMA(+3)-induced apoptosis through inhibition of telomerase activity via JNK activation

Shen SC, Yang LY, Lin HY, Wu CY, Su TH, and Chen YC

Abstract

The effects of six arsenic compounds including As(+3), MMA(+3), DMA(+3), As(+5), MMA(+5), and DMA(+5) on the viability of NIH3T3 cells were examined. As (+3) and MMA(+3), but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As(+3) and MMA(+3) were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As(+3) and MMA(+3) treatments. An increase in the intracellular peroxide level was examined in As(+3)- and MMA(+3)-treated NIH3T3 cells, and As(+3)- and MMA(+3)-induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As(+3)- and MMA(+3)-induced cytotoxicity. Suppression of JNKs significantly inhibited As(+3)and MMA(+3)-induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As(+3)- and MMA(+3)-induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As(+3) or MMA(+3). These data provide the first evidence to indicate that apoptosis induced by As(+3) and MMA(+3) is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved.