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Materials and Methods

Hepatocyte Culture

Hepatocytes were harvested from 4-6-week-
old male Sprague-Dawley rats weighing 200-
250 g by a modified two-step in situ
collagenase perfusion technique (Seglen,

1976) 23 The hepatocyte viability after the
harvest ranged from 90% to 95% based on
trypan blue exclusion. Hepatocytes were
cultivated in basal Williams® E medium (Life
Technologies, Grand Island, NY)



supplemented with 50 ng/ml epidermal
growth factor (Sigma Chemical Co., St

Louis, MO), 0.2x10> U/ml insulin (Lilly
Research Laboratories, Indianapolis, IN), 50
ng/ml linoleic acid (Sigma), 0.1 U/ml
penicillin (Life Technologies), 100 ng/L
streptomycin (Life Technologies), 2 mM L-
glutamate (LifeTechnologies), 0.1 um copper

(CuSO4-5H70), 50 pM zinc (ZnS04-7H»0),
3nM selenium (HSeO3) and 15 mM N-(2-

hydroxyethyl)piperazine-N -2-ethanesulfonic
acid  (HEPES) (Life Technologies).
Hepatocytes were cultured on 35-mm Falcon
Primaria dishes (Becton Dickinson, Franklin
Lakes, NJ) at approximately 40,000

cells'em?.  Six to twelve hours after
noculation, the medium was withdrawn to
remove unattached cells and fresh medium
was added. In the experiments involving
cytoskeleton-disorganizing drugs,
cytochalasin D (Aldrich, Milwaukee, WD,
taxol, or nocodazole (Cytoskeleton, Denver,
CO) were added to a final concentration of -
20 um at the time of medium replenishment.
The drugs were kept in the cultures until the
end of each experiment.

Determination of viability with confocal
microscope

Hepatocytes were dually stained with
fluorescein diacetate (FDA) (Sigma) and
cthidium bromide (EB) (Sigma) as described

previously (Nikolai et al, 1991)24. The
intracellular esterases cleave the FDA to
fluorescein only in viable cells. EB penetrates
dead cells and intercalates with the nuclear
DNA. Under a fluorescence microscope, the
viable cells appear green whereas the nuclei

of mnon-viable cells appear bri ght red.
Samples  were  observed  with  an
epifluorescence inverted microscope

(Olympus IX 70) connected to a confocal
laser scanning system (Model FV3500,
Olympus, Japan). The excitation wavelength
was 488 nm and the emitted light was
directed through a 595-nm beam splitter;
light of wavelength less than 595 nm was
filtered through a 530 nm band pass filter
(30-nm window) to detect FDA staining,.

Light emitted at greater then 595 nm was
filtered through a 600-nm long-pass filter to
deteet EB staining. The pinhole aperture was
set to 50 um. Each sample was scanned in a
raster fashion to produce side-by-side 512x
512 pixel images. Hepatocyte viability was
evaluated by counting the number of FDA-
stained and EB-stained cells on the acquired
images.

Actin Staining of Hepatocytes
The actin filaments in hepatocytes were

visualized by  phalloidin
fluorescence staining. Cells on monolayers
were stained 24 to 48 h after plating. After
washing with 2 mL of phosphate-buffered
saline (PBS), cells were fixed with 4%
paraformaldehyde for

Immuno-

10 min at room
temperature and then were permeabilized for
15 min in 0.2% Triton X-100 (Sigma) and
0.1% bovine serum albumin (BSA) (Sigma)
in PBS at room temperature. Cells were then
stained for 15 min with 0.5 pg/ml rhodamine-
phalloidin (Molecular Probes, Eugene, OR) in
PBS (working solution). After washing the
cells with PBS, a drop of PVA-glycerol (0.2
g/ml  polyvinylalcohol [Sigma] in a 12
mixture of glycerol [Sigma] and PBS) was
added to each sample before applying
coverslips. The samples were stored in the
dark at 4°C until examination. A confocal

laser scanning microscope (Model FV500,
Olympus, Tokyo, Japan) was utilized for
sample observation. An Olympus PlanApo
60x/1.4 NA oil-immersion objective lens was
The
excitation wavelength was set to 568 nm
while a 585 nm long-pass filter was utilized
to collect the emitted light. Tmages were
acquired using the FLUOVIEW software
(version 4.0, Olympus Optical Co. Ltd.,
Tokyo, Japan).

In the case of spheroids, samples from 4-day
cultures were transferred to 15-ml centrifuge

tubes. After washing twice with 10 ml PBS,
the spheroids were allowed to scttle by

used to visualize actin filaments.



gravity, transferred to glass Lab-Tek slides
(Nunc, Naperville, IL), and fixed for 1 h in
4% paraformaldehyde in PBS. The fixed
spheroids were washed in PBS for 20 min
followed by permeabilization overnight at 4
C using the same solution as that used for
monolayer cultures. The conditions for
rhodamine-phalloidin staining were the same
as that for monolayer cultures except that the
staining period was 1 h. The silicon gasket of
Lab-Tek slides was removed and a drop of
the PVA-glycerol mixture was added to each
sample. Coverslips were applied on top of
the samples and scaled with nail polish. The
spheroid samples were observed under a two-
photon excitation fluorescence microscope

(Mira 900-F laser and Verdi ™ V-5,
Coherent Laser Group, Santa Clara, CA,
USA) using a 10 objective lens and pulsed
laser at 1,000um.

In Situ Assessment of CYP450 Activity
To probe for the rat cytochrome P450
2B1/2 (CYP2B1/2} activity in hepatocyte

cultures, the pentoxyresofurin-O-

depentylation (PROD) reaction was employed.

Non-fluorescent pentoxyresorufin is a specific
substrate for rat CYP2B1/2 (Burke et al.,
1994) **. The product of the PROD reaction is
fluorescent resorufin. Detection of resorufin
in cells and cell aggregates is performed using
confocal ~ laser  scanning microscopy
(Heinomen et al., 1996; Sidhu et al., 1993) >
13

In situ detection of PROD activity was
employed in this study. Briefly, culture
medium was replaced with 2 ml of pre-
warmed incubation buffer and incubated for
5 min in a humidified, 5% CO2, 37°C
incubator. The incubation buffer was
Williams’ E medium without phenol red
supplemented with 2 mM probenicid (Sigma),
an inhibitor of glucoronidation, and 25 uM
dicumarol (Sigma), a specific inhibitor of
DT-diaphorase. Dicumarol inhibits further
metabolism of resorufin  (Cretton and

Sommadossi, 1991) 38 1o non-fluorescent
metabolites. The aqueous stock solutions of

0.2 M probenicid and 10 mM dicumarol were
prepared in 0.5 N NaOH. The pH of the
incubation buffer was adjusted to 7.2 with
1.00 M HEPES. The PROD reaction was
initiated by the addition of medium
containing 20 UM pentoxyresorufin was at 1
mM in DMSO. Confocal microscopy was
employed to determine the PROD activity
using a 10x/0.45 NA objective lens. The
excitation wavelength was 514 nm. A 570-
nm long-pass filter was used to detect the
emitted fluorescent intensity  with
wavelengths longer than 570 nm. The
pinhole aperture was set to 100 um .The
voltage of the photomultiplier tubes was held
constant throughout all 512 x 512 pixel
micrographs  that were scanned. A
pseudocolor map was implemented to
facilitate the visual comparison of the PROD
activity of cells under different cuiture
conditions.

Determination of Propofol Concentration
and its Metabolites by High Performance
Liquid Chromatography (HPLC) Analysis
The high-performance liquid chromatograph
used consisted of a solvent delivery system
sct to deliver a solvent flow of 1.5 ml/min,
an automatic sample injector and a
fluorescence detector. The excitation and
emission wavelengths were 276 and 310 nm,
respectively, and both monochromator slit
widths were 10 nm. A C reversed-phase
column was used at ambient temperature.
Microsomal  propofol hydroxylation
activities were determined as described

(Court et al, 1999Y>”. The dry residues of
propofol and its metabolites from in vitro
metabolism by rat liver microsomes was
redissolved in HPLC mobile phase {200 173))
and an aliquot (100 /£1) of the solute was
submitted to HPLC analysis. The mobile
phase consisted of 50% acetonitrite, 40%
water and 10% methanol with a flow rate
2ml/mim. A standard curve was generated by
assay of samples containing varying amounts
of a fixed amount of internal standard.
Metabolite  concentrations  were  then
calculated by linear regression of calibration
curve data using the measured metabolite-



internal standard peak height ratios. Enzyme
activity was calculated by dividing the
amount of product formed by incubation time
and microsomal protein content, and
expressed as nmol/min/mg. Incubation time
(10 min) and microsomal protein
concentration (100 pg/ml) were minimized to
ensure linearity of product formation with
respect to these variables,

Statistical Analysis

Cells from at least 4 separate incubation
plates with n = 10 were examined. The image
analysis of the results allowed the
fluorescence per cell (fluorescent mtensity, in
arbitrary units) to be quantified. The
activities of cytochrome P450 2B1/2 (PROD)
and HPLC analyses of metabolites of
propofol before and after the addition of
compounds interrupting cytoskeleton of
hepatocyte were analyzed with repeated
measurements of ANOVA,. Results are means
+ SEM. P <0.05 was considered significantly
different when comparing with the
corresponding control.

Results

Administration of hepG2 cells with 1,
25,75 and 100 uM propofol for 1, 6 and 24
hours did not affect cell viability (Table 1).
However, when the concentration of propofol
reach 300 and 1000 uM, the viability of
HepG2 cell significantly decreased.

The density of F-actin in HepG2 cells
exposed to 50 uM propofo] for 1 hour was
apparently reduced (Fig. 1). The suppressive
effect was lasted to 6 hours. Quantification of
the F-actin intensity in control and propofol-
treated HepG2 cells was carried out and the
results were shown in Fig. 2.

In untreated HepG2 cells, the PROD
activity was detectable (Fig. 3). Following
phenobarbital treatment, the PROD activity
was  significantly augmented. RT-PCR
analysis of CYP2B6 revealed that exposure
to phenobarbital for 24 and 48 hours induced
CYP2B6 mRNA (Fig. 4).

Confocal analysis of pentoxyresorufin

metabolism by CYP2B6 in HepG2 cells
revealed that the levels of 7-hydroxyresorufin,
a fluorescent metabolite, in phenobarbital-
treated HepG2 cells were significantly more
than control cells (Figs. 5 and 6).
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Table 1 Effect of propofol on the viability of HepG?2 cells

Conc, Cell Vi&bﬂi‘l‘y, ODss5
(kM) 1h 6h 24h
0 1.05+0.08  1.28+0.02 0.34 £ 0.03
1 0.08x008  1.43+0.06 0.34 £ 0.02
25 098%0.09  1.25+0.03 0.33 + 0.03
50 096008 125007 0.32 £ 0.03
75 1.00+£0.06  1.09+0.02 0.32+0.02
100 0.86+0.05  1.22+0.02 0.27 + 0.03
300 0.79£0.05°  1.00£006  0.13+002
1000 0.15+0.02° 0.10+001° 0.142001"

HepG2 cells were treated with various concentrations of
propofol for 1, 6 and 24 hours. Cell viability was assayed
by the MTT assay. Each value is represented as Mean +
SEM for n = 6. *Values significantly different from the

respective control, P < 0.05,

Fig. 1 Effect of propofol on F-actin of HepG2
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Fig. 2 Quantification of propofol-caused
suppressive effects on F-actin of HepG2

cells.
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Fig. 3 Effect of phenobarbital on PROD
activity of HepG2 cells.
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Fig. 4 Effects of phenobarbital on CYP2B6 Fig. 6 Quantification of the confocal analysis
mRNA of HepG2 cells. for phenobarbital-caused an increase in
PROD activity in HepG2 cells.

Fig. 5 Confocal analysis of PROD activity in
Hep@G2 cells.
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