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SUMMARY

Artificial neural network (ANN) is increasingly applied in

clinical medicine. We therefore constructed an ANN to

predict intracellular water (ICW) volume in 44 healthy

Taiwaners. Demographic and anthropometric data were

recorded as predictors, and ICW volume measured by bio-

electrical impedance analysis (ICW-BIA) was the reference.

ICW volume predicted by ANN (ICW-ANN) was com-

pared with ICW-BIA. ICW-BIA (21.26 � 0.58 l) and

ICW-ANN (21.25 � 0.57 l) was insignificantly different

(p ¼ 0.76). ICW-BIA and ICW-ANN were strongly

correlated (r ¼ 0.94, p 0 0.0001) with a significant

agreement (mean difference, 0.01; lower and upper limits

of agreement, )2.31 and 2.33) in Bland–Altman plot. Passing–

Bablok regression was described as ICW-BIA ¼
1.04 · ICW-ANN ) 0.49, with 95% confidence interval

for slope 0.94–1.14 and for intercept )2.76–1.49,

indicating that both methods were interchangeable. ANN

provided an excellent alternative of BIA to predict ICW

volume in healthy subjects.

Keywords: Neural network; anthropometry; intracellular

water; bioelectrical impedance

ª 2006 Blackwell Publishing Ltd

I N T R O D U C T I O N

Estimating intracellular water (ICW) volume has important

implications in clinical care. It can influence the determination

of body cell mass, nutritional condition, renal function, electro-

lytes balance and drug pharmacokinetics. Accurate measure-

ment of ICW volume is thus necessary in either healthy

subjects or patients with malnutrition, cardiac dysfunction,

renal impairment or sepsis. Dilution of radioactive 42potassium

or whole-body counting of radionuclide 40potassium can mea-

sure ICW volume in a direct manner (1). However, it is

impractical in most hospitals due to requirement of complex

equipment with a specialised team, radiation exposure and high

cost. Although there are increasingly studies using multifre-

quency bioelectrical impedance analysis (MF-BIA) to measure

body compositions as a substitute for complex techniques of

nuclear medicine (2,3), MF-BIA is not widely available and the

time of measurement is also concerned. By contrast, MF-BIA

is not convenient in subjects with illness and the procedure will

bother patients every time if physicians want to evaluate hydra-

tional or nutritional status frequently to make decisions for

following medical plans. Therefore, mathematical equations for

predicting ICW volume are commonly used by physicians

and nutritionists (4,5).

With the assistance of advances in computer-aided analy-

sis, it is easy to use the software for prediction tasks. The

representation of flexible model is artificial neural network

(ANN) which is a computational simulation of biologic ner-

vous system (6). Every processing element (‘neuron’) is

interconnected through a set of weighted signals similar to

biologic synaptic connections in a way to memorise, learn

and predict the response with least bias (7). The purpose of

the present study was to evaluate the feasibility of ANN in

quantitatively predicting ICW volume for a population of

healthy Taiwaners in comparison with the measurement by

using MF-BIA as reference method to avoid healthy subjects

exposing to additional radiation.

R E S E A R C H D E S I G N A N D M E T H O D S

Subjects

The Ethics Committee on Human Studies of Tri-Service

General Hospital (Taipei City, Taiwan) approved the study

protocol. All subjects provided signed informed consent prior

to enrolment in the study. Subjects were excluded if they had

any systemic illness such as hypertension, diabetes, cardiac,

hepatic or renal diseases. Subjects were also excluded if they

were taking any medication or had a history of oedema

formation or oedema on careful physical examinations. The

final study population consisted of 44 healthy Taiwaners (17

male and 27 female).
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ANN was applied to the training set and cross-validated

using leave-one-out resampling technique. Among the com-

mon cross-validation techniques, leave-one-out cross-valida-

tion generates the most accurate estimation of the predictive

performance for ANN (8). In short, ANN was trained on 43

cases, and the trained model was then used to test the case

that had been left out. This process was repeated until every

case in the dataset had been used once as an unseen test case.

The results were averaged across the 44 test cases to estimate

the predictive performance. This technique is useful to enable

all the available subjects to be used in training process and

gives a significant validation of the generalising ability of the

trained model.

Measurements

Demographic and anthropometric data recorded for all

patients included age, gender, weight and height. All

anthropometric measurements were performed by the same

operator. All patients were clothed in underwear with bare

feet for measurements, with weight measured to the nearest

0.1 kg using a digital scale and height measured to the

nearest 0.1 cm using a linear height scale. Mean values from

two measurements were employed as data.

MF-BIA is based on the basic principle that resistance of

the body to an electrical current applied at low frequencies

reflect extracellular water space, whereas at high frequencies

the current is conducted in both extracellular and intracellular

spaces, reflecting the total body water (TBW) space. The

direction of the electricity can be changed when the frequency

of the electrical signal is changed. Normally, MF-BIA is

carried on at frequencies from 1 KHz to 1 MHz. At our

institute, segmental resistances of arms, trunk and legs were

measured by a MF bioelectrical impedance analyser (Inbody

3.0, Biospace Co. Ltd, Seoul, Korea) with all patients stand-

ing upright. The instrument uses eight-polar tactile electro-

des: two in contact with the palm and thumb of each hand

and two with the anterior and posterior aspects of the sole of

each foot. The patient stands with soles in contact with foot

electrodes and grasps hand electrodes (9). These electrodes are

connected to the current and voltage supply of the device.

Before the measurement procedure, the demographic (age

and gender) and anthropometric (weight and height) data

are input to the built-in software of the instrument.

Impedance is then measured through on and off switches

regulated by microprocessor of the instrument. By regulation

of these switches in a proper order, the impedance from

different body segments can be accordingly detected. The

measured body segments are left and right arms, trunk and

left and right legs. The MF measurement is conducted by

using multiple frequencies at 5, 50, 250 and 500 kHz. This

analyser calculates TBW as TBW ¼ A1 · height2 ⁄ Rarm þ
A2 · height2 ⁄ Rtrunk þ A3 · height2 ⁄ Rleg þ C, where Rarm,

Rtrunk and Rleg are resistances of the arm, trunk and leg,

respectively; A1, A2 and A3 are coefficients and C is a

constant, based on the theory proposed by K. Cha et al.

(10). ICW volume is also calculated through the same

analyser by body resistances at high and low frequency

as ICW ¼ TBW · (R5 ⁄ R500), where R5 and R500 are

resistances at 5 and 500 kHz, respectively.

In all subjects, the study was performed in the fasting

state and after urination. The procedure was performed in

3 min or less. To analyse the repeatability of the study, we

performed MF-BIA five times at intervals of 3 min in nine

subjects. The mean of the standard deviation and the coeffi-

cient of variation of each set of readings were 0.10 and

0.29%.

ANN Construction

The configuration of ANN, including number of hidden

layers, number of nodes in each hidden layer or activation

function, is constructed by the designer at the beginning. No

any protocol is standardised to decide these parameters, and

the best practice seems to be based on trial and error (11).

Some commercial programs provide automatic optimisation

of networks to find better architectures (12,13). In our

study, the software NEUROSOLUTIONS 4.32 (NeuroDimension

Inc., Gainesville, FL, USA) was used to build our topological

network. According to our experience, we selected the most

popular and generally acknowledged multilayer perceptron

architecture. We adopted the default values of network

parameters provided by the NEUROSOLUTIONS. Multilayer

perceptron is a layered feed forward network typically

trained with back propagation. It is easy to approximate any

input-output ontology. We used demographic variables (age

and gender) and anthropometric variables (weight and

height) to feed ANN as input variables. This model had one

hidden layer with five processing elements based on the

TanhAxon transfer function with hyperbolic tangent

(Figure 1). We set up the momentum at 0.7 and step size at

1.0 as the learning rule. In output layer, the transfer function

was also TanhAxon with hyperbolic tangent; the momentum

and step size of learning rule were 0.7 and 0.1, respectively.

We used the standard approach to randomly divide the

dataset into three parts: a training set, a selection set and a

test set. The training set is used to fit the model; the selec-

tion set is used to estimate prediction error for model selec-

tion; the test set is used for assessment of the generation

error of the final chosen model. Besides using leave-one-out

cross-validation technique, to determine the training set and

validation set in our study, we randomly selected 15% of

training set as selection set which was a method for stopping

network training. This step monitors the error on an inde-

pendent set of data and stops training when this error begins

to increase. In simulation control, the stop criteria for the
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supervised training of the network were specified. The maxi-

mum epochs over the training set was set to 1000 iterations.

The mean squared error was used to terminate the training

process and supervised learning. The mean squared error

termination is to base the stop criteria on the selection set

instead of the training set. This will tend to be a good indi-

cator of the level of best generalisation that the network has

achieved (14). We also used the ‘increase’ function when

using the selection set for mean squared error termination.

This stops the network when the mean squared error of the

selection set begins to increase. This is an indication that the

network has begun to overtrading. The weights of the best

network (the one with the lowest mean squared error) are

automatically saved by default. The mean values of proces-

sing elements in the hidden layer were also calculated and

presented in Figure 1. By loading best on test, these weights

will automatically be loaded into the network before the test

set is fed through the network. Therefore, we used fine

adjustments to achieve the optimised architecture to monitor

ANN training and overcome the problems of overtraining

and overfitting. In 44 training processes, all iterations stop

before maximal 1000 epochs, and the numbers of iterations

were from 700 to 800 actually.

Anthropometric Equation Construction

For comparison with ANN, we used the software MEDCALC

8.0 (MedCalc Software, Mariakerke, Belgium) to develop our

anthropometric equation in calculating ICW volume-Taiwan

(ICW-TWN). The input variables were the same as in ANN,

and multiple stepwise linear regression (variable entered if

p 0 0.05 and variable removed if p 1 0.1) was carried out.

Due to the limitation in linear regression analysis, we trans-

ferred the categorical variable ‘gender’ into numerical type

(i.e. male and female as 1 and 0, respectively). The leave-one-

out resampling technique was also applied for each set, using

the mean value of each parameter as the final choice. Besides,

another anthropometric equation developed by R.N. Pierson

et al. (4) was also used to calculate ICW volume-Pierson as

follows: ICW-PSN ¼ (0.470 ) 0.0014 · age) · weight in

male and ICW ¼ (0.451 ) 0.0021 · age) · weight in

female.

Statistical Analysis

Data were analysed using the MEDCALC 8.0 AND expressed as

mean � standard error. Correlations between each input

variable and ICW volume derived from MF-BIA were ana-

lysed by Spearman’s rank correlation coefficient (Rs) with

95% confidence interval (CI). ICW volumes derived from

Pierson formula (ICW-PSN), our anthropometric equation

(ICW-TWN) and ANN (ICW-ANN) were compared with

BIA-measured ICW volume (ICW-BIA) by using Wilcoxon

test. The statistical association between ICW-BIA and each

predictive ICW volume was also expressed in terms of Rs

with 95% CI. High correlation means that the measurements

by the two methods are linearly related. However, this high

correlation does not mean that the two methods agree.

Bland–Altman plot, which calculates differences between of

the measurements of the two methods against averages, is a

useful graphical analysis to reveal a relationship between the

differences and the average, to look for any systematic bias

(15). The graph displays a scatter diagram of the differences

plotted against the averages of the two measurements. Hori-

zontal lines are drawn at the mean difference, and at the

mean difference plus and minus 1.96 times, the standard

deviation of the differences. Although Bland–Altman plot

can be used as an indication of bias for a new model to com-

pare with a reference method, a poor goodness-of-fit can

occur in a lesser bias model. To alleviate this problem, we

use root mean square error (RMSE) as a measure of good-

ness-of-fit for models comparison. The model with smaller

RMSE value will have better fit if there is more than one

model to fit the data. The equation used for RMSE is as

follows,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1

ðICWmodel � ICWBIAÞ2=n

r
, where n is the sam-

ple size. To evaluate the interchangeability of two methods,

it was found the Passing–Bablok regression describes a linear

regression procedure with no special assumptions regarding

the distribution of the samples and the measurement errors

(16). The result does not depend on the assignment of

the methods to variables X and Y. The slope B and

intercept A are calculated with their 95% CI. These CIs are

Age

–0.57

0.03

0.15 ICW

–1.97

0.64

Hidden layer Output layer

Gender

Weight

Height

Input layer

Figure 1 Graphical representation of our multilayer perceptron

artificial neural network model. The number in each processing

element of hidden layer stands for the mean value of corresponding

weights
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used to determine whether there is only a chance difference

between B and 1 and between A and 0.

R ES U L TS

The characteristics of study subjects are presented in Table 1.

Their age ranged from 22 to 78 years old and male to female

ratio was 0.63. Among these input variables, gender, height

and weight were strongly correlated with ICW-BIA statisti-

cally (p 0 0.0001). Although age was not statistically corre-

lated, the Rs value showed the negative correlation which was

different with other variables. Our anthropometry-based

equation after stepwise processes was ICW-TWN ¼
3.13 · gender þ 0.09 · height þ 0.19 · weight )
0.04 · age ) 5.05, where gender ¼ 1 if male and 0 if

female (r ¼ 0.92, p 0 0.001). The p values of gender,

height, weight and age in formula ICW-TWN were

00.0001, 0.03, 00.0001 and 0.0081, respectively.

Figure 1 is the diagram of our ANN model which shows

the number of processing elements in each of the three layers,

and it illustrates the fact that the network was fully connected

in that each processing element in a given layer was connected

to every processing element in the adjacent layer. The

number in each processing element of hidden layer represents

the mean value of corresponding weights. The magnitudes of

the weights were determined during the training period on

the training set, and they were not changed during the time

that the network was applied to the selection set and test set.

Table 2 presents results of measured ICW volume by MF-

BIA (21.26 � 0.58l) and predictive ICW volumes by

anthropometric equations and ANN. ICW volume derived

from Pierson formula (ICW-PSN) was significantly higher

than ICW volume measured by MF-BIA (ICW-BIA). No

statistical difference was found between ICW-BIA and

ICW-TWN or ICW-ANN. All estimates of ICW volumes

(ICW-PSN, ICW-TWN and ICW-ANN) significantly corre-

lated with ICW-BIA (Rs ¼ 0.94, 95% CI 0.89–0.97,

p 0 0.001). Nevertheless, Bland–Altman plot shows a pro-

portional bias between ICW-BIA and ICW-PSN (Fig-

ure 2A); its mean difference was )2.24, with a largest

absolute interval of agreement 7.27 ()5.87 to 1.40) which

represented more bias than ICW-TWN or ICW-ANN com-

pared with ICW-BIA. In contrast, the mean difference either

between ICW-BIA and ICW-TWN or ICW-ANN is )0.01

and 0.01, respectively, according to the representation of

Bland–Altman plot which shows that their differences are

randomly scattered around a mean of approximately zero

(Figure 2B,C); no significant bias was found in the predic-

tions of our anthropometric equation or ANN compared

with MF-BIA. In addition, the absolute interval of agree-

ment between ICW-BIA and ICW-ANN was 4.64 ()2.31 to

2.33) which was smaller than the value 4.69 ()2.35 to 2.34)

between ICW-BIA and ICW-TWN despite they were

comparable. The RMSE value between ICW-BIA and ICW-

ANN was also smallest than the value either between ICW-

BIA and ICW-PSN or ICW-TWN. This represented that

ANN had better fit to MF-BIA than other two calculation-

based equations (Table 3).

Using Passing–Bablok regression analysis for method com-

parison, the functions were as follows: ICW-BIA ¼0.77 ·
ICW-PSN ) 3.29 (Figure 3A), ICW-BIA ¼ 1.05 · ICW-

TWN ) 1.15 (Figure 3B) and ICW-BIA ¼1.04 ·ICW-

ANN ) 0.49 (Figure 3C). All their 95% CIs of three

methods proved the corresponding slopes and intercepts

to be not statistically different from one and zero

without statistically significant deviation (p 1 0.10), indica-

ting that these three methods are interchangeable with

MF-BIA. However, only Passing–Bablok regression between

ICW-BIA and ICW-ANN with simultaneously narrowest

95% CIs for slope 0.94–1.14 includes one and for intercept

)2.76 to 1.49 includes zero could truly reflect the best

interchangeability for ICW-ANN and ICW-BIA (Table 3).

Table 1 The characteristics of 44 healthy subjects

Characteristics Value or ratio Rs (95% confidence interval) P value*

Age (years) 48.16 � 1.95 )0.25 ()0.51–0.05) 0.10

Gender (male ⁄ female) 17 ⁄ 27 0.83 (0.70–0.90) 00.0001

Height (cm) 161.18 � 1.16 0.83 (0.70–0.90) 00.0001

Weight (kg) 63.15 � 1.41 0.84 (0.73–0.91) 00.0001

*The P value denotes that each variable correlated with intracellular water-bioelectrical impedance analysis using Spearman’s correlation coefficient (Rs) with 95%

confidence interval.

Table 2 Results of ICW volumes by MF-BIA, anthropometric

equations and ANN

ICW (l) P value*

ICW-BIA 21.26 � 0.58 –

ICW-PSN 23.50 � 0.75 00.0001

ICW-TWN 21.27 � 0.56 0.81

ICW-ANN 21.25 � 0.57 0.76

ANN, artificial neural network; BIA, bioelectrical impedance analysis;

ICW, intracellular water; MF, multifrequency; PSN, Pierson; TWN, Tai-

wan. *The p value denotes that each predictive ICW volume was compared

with ICW-BIA using Wilcoxon test.
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D I S C U S S I O N

MF-BIA has been used to measure ICW volume with ease by

many clinical researchers because of its portable, inexpensive,

non-invasive technique without radiation exposure. Although

MF-BIA can not measure ICW volume directly as do radio-

tracer techniques, several investigations support its reliability

(17–19). Herein, we designed such an investigation to

explore other possible model for predicting ICW volume in

healthy subjects without using radiotracers or MF-BIA.

From the perspective view of practice, several anthropo-

metric equations are available for estimating TBW volume

including TBW volume as 58% of body weight, the Watson

formula (20) and the Hume formula (21). It is reasonable to

use demographic data (gender and age) and anthropometric

measurements (weight and height) as predictors to construct

a model in predicting ICW volume. For any forecasting

model to be applicable in making clinical decisions, a most

valuable meaning is that only data that are readily and easily

available to the physicians at the time of triage are used (12).

Because many variables in body compartment study have an

optimal estimate (e.g. body mass index), they correlate with

output in a nonlinear pattern (22). Because a nonlinear phe-

nomenon seems to be essential in medicine, ANN has an

advantage to recognise complex underlying relationships of

biological processes between independent and dependent

variables in a nonlinear pattern by learning algorithms and

containing more or less processing elements in hidden layers.

Furthermore, ANN approach can make use of combinations

of categorical and continuous variables. No assumption of

variable distribution is necessary, and correlative interactions

among inputs are pruned during the network’s training pro-

cess. The performance of ANN will continuously improve

over time because ANN can be constantly retrained as more

cases accumulate. Such advantages make ANN a more

robust application in the real world setting. Before initiating

one predictive model into the clinical application for ill

subjects, the model in predicting ICW volume for healthy

subjects should be studied as the baseline first. Therefore,

we tried to develop an ANN to predict ICW volume

and increase the efficiency of health-care resource usage.

Unlike more equations for TBW volume prediction

(20,21,23), there are limited anthropometry-based equations

for ICW volume prediction. We used Pierson formula for

comparison with our ANN. Pierson formula was derived

from 58 normal North American (30 males and 28 females)

whose gender proportion was not statistically different with

ours (p ¼ 0.27). Their age range was 19–80 years old that

was also similar with our subjects (aged from 22 to 78 years

old). In our study, the predictive ICW volume derived from

Pierson formula was significantly higher than the actual meas-

urement of ICW volume by MF-BIA through the direct com-

parison using nonparametric paired Wilcoxon test, but the

difference was not statistically significant from our anthro-

pometric equation and ANN forecasting. In addition to body

compositions related to racial difference, other justifications

might contribute to this discrepancy. The predictors used in
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Figure 2 Comparison of intracellular water-bioelectrical impedance

analysis (ICW-BIA) and each predictive model according to the

graphical representation of Bland–Altman plot with indication of the

mean difference between the values and of the limits of agreement.

(A) ICW-PSN, (B) ICW-TWN and (C) ICW-ANN
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Pierson formula were limited to weight and age. In contrast,

ANN may identify input variables that are most valuable with

regard to accuracy of prediction. Our ANN model did not

prune any input variable (age, gender, weight and height) and

adopted all these four fundamental anthropometric predictors

into constructing architecture which lead to more accurate

prediction of ICW volume. Even though age was statistically

insignificant in our univariate correlation analysis, multiple

stepwise linear regression analysis still selected these four pre-

dictors to build our anthropometric equation. These findings

suggest that applying variables in clinical medicine should not

be easily neglected and explained as linear relationship, espe-

cially for biological phenomenon. Although input variables

selected in ANN should not be depicted as independent pre-

dictors as discerned by clinicians, they could be interpreted as

a framework of multiple local models or as part of global

function of ANN, in which different mathematical functions

are developed and applied in different clusters within the

problem space, expressing the multidimensional nature of

interconnections among clinical factors (24).

In our study, all predictive methods strongly correlated

with ICW volume measured by MF-BIA using Spearman’s

rank correlation coefficient, Bland–Altman plots predomi-

nately revealed the distributed pattern of proportional error

and wider absolute interval of agreement for Pierson formula

calculation which means that Pierson formula may be not the

appropriate method to predict ICW volume in healthy sub-

jects. By contrast, Bland–Altman graphical approach to com-

pare two methods of measurements of a given biological

value, ICW-TWN vs. ICW-BIA or ICW-ANN vs. ICW-

BIA, does not tell if the interchangeability found between

these two methods is good or not; this qualification depends

on the error magnitude that is, arbitrarily, considered clinic-

ally acceptable. When looking at Figure 3A–C, it can be seen

that for many of the 44 data points, the two methods (ICW-

BIA vs. ICW-ANN) yielded values most close to identity than

other two comparisons (ICW-BIA vs. ICW-PSN and ICW-

BIA vs. ICW-TWN). Moreover, our ANN had the lowest
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Figure 3 Passing–Bablok regression shows a scatter diagram with

regression line (solid line), the 95% confidence interval for the

regression line (dashed lines), and identity line (X ¼ Y, dotted

line). (A) ICW-PSN vs. ICW-BIA, (B) ICW-TWN vs. ICW-BIA

and (C) ICW-ANN vs. ICW-BIA

Table 3 Spearman’s rank correlation coefficient with 95% CI,

RMSE and Passing–Bablok regression for anthropometric equations

and ANN compared with MF-BIA

ICW-PSN ICW-TWN ICW-ANN

Spearman’s

rank correlation

coefficient

0.94 0.94 0.94

95% CI 0.89–0.97 0.89–0.97 0.89–0.97

RMSE 2.89 1.19 1.16

Passing–Bablok

regression

Slope 0.77 1.05 1.04

95% CI 0.68–0.86 0.95–1.17 0.94–1.14

Intercept )3.29 )1.15 )0.49

95% CI 0.76–5.63 )3.91–0.98 )2.76–1.49

ANN, artificial neural network; CI, confidence interval; ICW, intracellular

water; MF, multifrequency; RMSE, root mean square error; PSN, Pierson;

TWN, Taiwan.
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RMSE value, an index of goodness-of-fit for a model, than

other two calculation-based equations. Despite both our

anthropometric equation and ANN did a similarly excellent

task to predict ICW volume, our ANN proved to have better

performance in predicting ICW volume based on MF-BIA.

Although the number of study population were relatively

limited in our study, we utilised the leave-one-out cross-

validation technique, a kind of resampling method, to over-

whelm this difficulty and it performed the superior results.

Nevertheless, we must make plans for more subjects to

participate in our following study. There are also some

potential limitations in our study. Actually, no clearly direct

cause-and-effect relation has been shown between input and

output variables and this ‘black box’ phenomenon remains

an obstacle to the acceptance in clinical use. The restriction

of ANN approach is that statistical importance to each

input variable could not be easily computed and offered as

they are in linear regression analysis. Although weights and

values of processing elements are produced in ANN process,

their interpretation is difficult and can not be though as

standardised coefficient of each predictor. This deficiency of

interpretability at the level of individual predictors is the

most unfavourable characteristics in ANN analysis. Con-

versely, supporters of ANN claim that discovering a good

enough solution is worthy of acceptance and better than

conventional calculation-based approaches. The existing

exchange between being able to model nonlinear functions

favours ANN for applications where its principal purpose

is to acquire a dependable forecasting rather than to earn

an understandability of the contribution of individual

predictors (25). ANN is an alternative approach to algebraic

equations for problem solving in medical research and

routine clinical practice. Nevertheless, in those cases where

the purpose of the analysis is examination of possible causal

relationships or explanation of interactions among

predictors rather than prediction, traditional multivariate methods

are probably favoured; hence, we also offered one

algebraic equation to examine the causality.

Meanwhile, some designs incorporating structures of both

conventional linear regression and ANN might lead to the

optimum of predictive models (6). Conventional linear

regression as a tool of feature selection helps the researchers

recognise those input variables that may be significant pre-

dictors and helps to taper the numbers of dimensional

variables included in ANN approach. Conventional linear

regression also permits the researchers to put confidence

around model outputs and parameters estimates after the

underlying structure of relationships among predictors is

recognised (anatomic analysis). Clinical predictive perform-

ance may be intensified through the benefit of ANN

process that is able to inspect nonlinear interactions

among predictors (functional analysis). As a new development

of medical technology combing the utilisation of positive

emission tomography and X-ray computed tomography, this

epochal evolution of functional (ANN approach) and

anatomic (traditional multivariate statistics) integrations will

eventually take best advantage to the medical progression if

applying these information technologies properly.

Algebraic equations indeed could be produced by anyone

with papers and pens whereas ANN needs a computer with

appropriate software; we herein provide an anthropometry-

based equation which has similar performance closely to

ANN whilst there are no computers and ⁄ or ANN software

available. If ANN can improve the effectiveness in patient

care, many physicians will accept such a tool as an assistant

in clinical use. Sometimes, ANN is thought to be too

difficult to manage by physicians, but the bioengineering of

ANN into tools of medical practice is not difficult as many

medical devices already have such systems embedded in

them such as electrocardiography (26). At the present time,

with the help of graphical user interface by friendly soft-

ware, ANN is actually comfortable to use without loosing

its flexibility and accuracy. Also given the rapid advances in

ANN software and in computer hardware, it is likely that

sophisticated ANN programs, such as the one used in our

study, could be made available to clinical facilities and

could save time and resources by supporting the physicians

towards a quick and accurate prediction. Future studies may

concentrate on developing the web-based platform using

our ANN as kernel engine to help the physicians to evaluate

ICW volume in real time.

In conclusion, ANN can be used as a feasible alternative to

predict ICW volume in healthy subjects on the basis of MF-

BIA. With the assistance of friendly software in evolutional

era of information technology, it is easy to use artificial

intelligent model without any difficulty. We deeply believe

that our study using ANN in predicting ICW volume will

be a foundation for further investigation in illness status.

Therefore, further research need to be programmed for

various diseases status in the future.
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