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CHEN, C.-A., LI, Y.-C., LIN, Y.-F., YU, F.-C., HUANG, W.-H. and CHIU, J.-S.  Neuro-
Fuzzy Technology as a Predictor of Parathyroid Hormone Level in Hemodialysis Patients.  
Tohoku J. Exp. Med., 2007, 211 (1), 81-87 ── Measuring the plasma parathyroid 
hormone (PTH) concentration is crucial to evaluate renal bone disease in patients with 
renal failure.  Although frequent measurement is needed to avoid inadequate prescription 
of phosphate binders and vitamin D preparations, artificial intelligence can repeatedly per-
form the forecasting tasks and may be a satisfactory substitute for laboratory tests.  Neuro-
fuzzy technology represents a promising forecasting application in clinical medicine.  We 
therefore constructed a coactive neuro-fuzzy inference system (CANFIS) to predict plasma 
PTH concentrations in hemodialysis patients.  The CANFIS was constructed with clinical 
parameters (patient age, plasma albumin, calcium, phosphorus, alkaline phosphatase, and 
calcium-phosphorus product) from a cohort of hemodialysis patients, and plasma PTH 
concentration measured by radioimmunoassay (RIA) was the supervised outcome.  The 
accuracy of the CANFIS was prospectively compared with RIA in another hospital.  
Plasma PTH concentrations measured by RIA and predicted by CANFIS were 179.04 ± 
38.18 ng/l and 179.34 ± 37.76 ng/l, respectively (p = 0.15).  The CANFIS was able to pre-
cisely estimate plasma PTH concentrations in hemodialysis patients.  These results suggest 
that the neuro-fuzzy technology, based on limited clinical parameters, is an excellent alter-
native to RIA for accurately predicting plasma PTH concentration in hemodialysis patients. 
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Renal bone disease is an important cause of 
morbidity in hemodialysis patients.  It is usually 
stratified as high turnover bone disease (osteitis 
fibrosa cystica) or low turnover bone disease 
(osteomalacia and adynamic bone disease), based 

on plasma concentration of parathyroid hormone 
(PTH) and characteristic findings of bone histo-
morphometry.  Because bone biopsy is an inva-
sive procedure, determination of plasma PTH 
concentration is fundamental for optimal inter-
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approved the multi-institutions study.  Informed consent 
for enrolled patients was not required for clinical data 
collection from medical records according to the protocol 
of our institutional review board.  To preserve patient 
confidentiality, direct patient identifiers were not collect-
ed.  Data were reported only in aggregate form.

For the quantitative prediction of plasma PTH con-
centration, we used the software NeuroSolutions 4.32 
(NeuroDimension, Inc., Gainesville, FL, USA) to con-
struct a CANFIS network using a training set of patients 
from dialysis unit A.  To choose adequate predictors typi-
cally available to physicians, we selected the most rele-
vant parameters including age of patient, plasma albu-
min, calcium, phosphorus, alkaline phosphatase, and 
calcium-phosphorus product, which were routinely moni-
tored every month in the dialysis unit, as input variables.  
Plasma PTH concentration measured by RIA at dialysis 
unit A (PTH-RIAA) was entered as the output variable.  
In dialysis unit A, blood albumin, calcium, phosphorus, 
and alkaline phosphatase concentrations were measured 
by an automatic biochemistry analyzer (Hitachi 7170; 
Hitachi Co., Tokyo) and plasma PTH concentration was 
measured by RIA (Active I-PTH DSL-8000; Diagnostic 
Systems Laboratories, Inc., Webster, TX, USA).  All 
input and output variables were collected simultaneously.

Before training the CANFIS, we randomly selected 
30 patients (25%) from 121 patients as typical examples 
for cross validation that monitors the error on an inde-
pendent set of data and stops training when the error 
begins to increase.  All six input variables were used as 
inputs and PTH-RIAA was used as the supervised output 
to construct the CNAFIS network.  In selection of mem-
bership function and fuzzy model, we used three bell-
shaped curves for each input and the Takagi-Sugeno-
Kang fuzzy model, respectively.  With the help of batch 
learning, the axon was chosen as the transfer function to 
store input.  The step size and momentum coefficient of 
the learning rule were set as 1.00 and 0.70, respectively.  
The CANFIS network was trained after several iterations 
by using mean square error to terminate the supervised 
learning.

After prospectively collecting the input variables 
from dialysis unit B in the same manner as from dialysis 
unit A, the CANFIS was tested in the external validation 
group while the CANFIS was blinded to the actual out-
come.  Plasma PTH concentration for each patient pre-
dicted by CANFIS (PTH-CANFIS) was compared with 
the actual PTH measurement at dialysis unit B (PTH-
RIAB).  In dialysis unit B, blood albumin, calcium, phos-
phorus, and alkaline phosphatase concentrations were 

vention.  Generally, dosages of phosphate binders, 
vitamin D analogues, or calcimimetic drugs are 
based on plasma calcium, inorganic phosphorus, 
and especially PTH levels (Elder 2002).  The 
National Kidney Foundation Kidney Disease 
Outcomes Quality Initiative (K/DOQI) Clinical 
Practice Guidelines for Bone Metabolism and 
Disease suggests monitoring plasma PTH levels 
every 3 months for dialysis patients (National 
Kidney Foundation 2003).  In practice, however, 
many dialysis institutions routinely monitor 
plasma PTH concentrations for dialysis patients at 
intervals of every six months or longer.

In addition to the increased prevalence of 
low turnover bone disease in uremic patients, 
overzealous empirical treatment with vitamin D 
analogues could result in the occurrence of low 
turnover bone disease.  Therefore, it is necessary 
to frequently monitor plasma PTH concentration 
by K/DOQI-recommended radioimmunoassay 
(RIA) intervals.  With a goal of guaranteeing dia-
lytic quality without increasing the cost of fre-
quent measurement, we postulated that a predic-
tive model using artificial intelligence software 
can repeatedly perform the forecasting tasks and 
may be a satisfactory substitute for measuring 
PTH by RIA.  Therefore, we constructed a coact-
ive neuro-fuzzy inference system (CANFIS) 
(Hardalac et al. 2004), which is an advanced com-
bination technology of fuzzy logic and neural net-
work to investigate the feasibility of quantitatively 
predicting plasma PTH concentration for hemodi-
alysis patients.

METHODS

Patients enrolled in the study were 121 stable hemo-
dialysis patients from an independent dialysis unit of 
Buddhist Dalin Tzu Chi General Hospital, Chiayi 
County, a teaching hospital in western Taiwan.  These 
patients served as the training group (Unit A).  In addi-
tion, 32 stable hemodialysis patients from an independent 
dialysis unit of Taitung Hospital, Taitung City, a general 
hospital in eastern Taiwan were enrolled as the test group 
(Unit B).  All patients were treated on maintenance 
hemodialysis for more than six months without any con-
currently acute illness at the time of enrollment.  The 
Institutional Review Board Ethics Committee on Human 
Studies of Buddhist Dalin Tzu Chi General Hospital 
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measured by an automatic biochemistry analyzer 
(Olympus AU400, Olympus Co., Tokyo) and plasma 
PTH concentration was measured by RIA (Allegro, 
Nichols Institute, San Juan Capistrano, CA, USA).  As in 
Unit A, the input and output variables were collected 
simultaneously.

Data were analyzed using the MedCalc 8.1 
(MedCalc Software Inc., Mariakerke, Belgium) and 
expressed as the mean ± standard error or as a ratio.  The 
Mann-Whitney’s U-test or Chi-square test was used to 
compare patient characteristics between training and 
external validation groups.  The PTH-RIAB and 
PTH-CANFIS were compared by the Wilcoxon test.  
Spearman’s coefficient of rank correlation and Passing-
Bablok regression (Passing and Bablok 1983) were 
adapted to evaluate the performance of the CANFIS in 
predicting the plasma PTH concentration for hemodialy-
sis patients.  High correlation means that the measure-
ments by the two methods are linearly related.  However, 
this high correlation does not mean that the two methods 
agree.  To evaluate the interchangeability of two meth-
ods, the Passing-Bablok regression describes a linear 
regression procedure with no special assumptions regard-
ing the distribution of the samples and the measurement 
errors.  The result does not depend on the assignment of 
the methods to variables.  The slope and intercept are 
calculated with their 95% confidence intervals.  These 
confidence intervals are used to determine whether there 
is only a chance difference between slope and one and 
between intercept and zero.

RESULTS
The results of patient characteristics for the 

two dialysis units are shown in Table 1.  No 
statistical differences were found between the 
training (dialysis unit A) and external validation 
(dialysis unit B) groups except plasma calcium 
concentration.  After the training process for the 
CANFIS, total epochs were 911 iterations.  The 
PTH-RIAB (179.04 ± 38.18 ng/l) and PTH-
CANFIS (179.34 ± 37.76 ng/l) were not statisti-

TABLE 1.  Patient characteristics of two dialysis units.

Dialysis unit A
(n = 121)

Dialysis unit B
(n = 32) p value

Male/Female 58/63 15/17 0.93
Age (years)   59.98 ± 1.19 62.53 ± 2.19 0.25
Albumin (g/l)   39.12 ± 0.33 39.66 ± 1.19 0.13
Alkaline phosphatase (U/l) 133.31 ± 4.92 174.31 ± 34.22 0.66
Calcium (mmol/l)     2.33 ± 0.02   2.42 ± 0.04 0.03
Phosphorus (mmol/l)     1.40 ± 0.04   1.42 ± 0.08 0.67
Calcium-phosphorus product     3.26 ± 0.10   3.44 ± 0.21 0.35
Parathyroid hormone (ng/l)   126.57 ± 14.36 179.04 ± 38.18 0.11

The p values were derived from Mann-Whitney’s U-test for continuous variables and 
Chi-square test for categorical variable.

Fig. 1.  Passing-Bablok regression analysis.  The 
Plasma PTH concentration predicted by the 
CANFIS is plotted against the results of the 
radioimmunometric assay that shows a scatter 
diagram with regression line (solid line), the 
95% confidence interval for the regression line 
(dashed lines), and identity line (X = Y, dotted 
line).  The results indicate that both methods 
are interchangeable without statistically sig-
nificant deviation (p > 0.10).
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cally different (p = 0.15).  Spearman’s coefficient 
of rank correlation between PTH-RIAB and PTH-
CANFIS was 0.98 (p < 0.001).  The relationship 
between PTH-RIAB and PTH-CANFIS by the 
Passing-Bablok regression (Fig. 1) was PTH-
RIAB = 1.01 × PTH-CANFIS + 4.73, with a 95% 
confidence interval for slope 0.99 to 1.03 which 
includes one and for intercept −3.72 to 8.76 which 
includes zero, indicating that both methods are 
interchangeable without statistically significant 
deviation (p > 0.10).

DISCUSSION
PTH plays a central role in the pathogenesis 

of renal bone disease.  Hyperparathyroidism is 
also associated with an increase in the relative 
risk of death, cardiovascular, and fracture-related 
hospitalization in hemodialysis patients (Block et 
al. 2004).  Hence, we suggest that frequently 
monitoring plasma PTH concentration in hemodi-
alysis patient should be carried out in spite of 
increased costs.  Although there are advancements 
in hemodialysis care in Taiwan, the interval for 
PTH measurement in most dialysis centers is 
every six months or longer.  In research not previ-
ously reported, our goal was to develop a neuro-
fuzzy technology as an alternative to RIA 
measurement to predict PTH levels in hemodialy-
sis patients, and prospectively verify the useful-
ness of this technology in a different group.  With 
the help of Passing-Bablok regression, which 
describes statistics without special assumptions 
about the distribution of the samples and measure-
ment errors, we successfully displayed the inter-
changeability between the CANFIS and RIA.

Neuro-fuzzy technology is increasingly used 
for data analysis and decision-making purposes in 
clinical medicine (Hanai and Honda 2004; 
Ramesh et al. 2004).  Recently, this technology 
has been used for accurately predicting renal 
function from serum creatinine (Marshall et al. 
2005).  Although the regulation of PTH in dialysis 
patients is complicated, a CANFIS can achieve a 
good prediction by using a fuzzy inference system 
as a preprocessor in a neural network to optimize 
fuzzy parameters of membership function with 
backpropagation.  This fuzzification makes the 

neural network’s task easier by characterizing 
inputs that are not easily discretized.  Therefore, 
neuro-fuzzy technology combines the benefits of 
neural networks and fuzzy inference systems and 
enables us to obtain better results.  Furthermore, 
the neuro-fuzzy approach can make use of combi-
nations of categorical and continuous variables.  
No assumptions of variable distribution and inter-
dependence are necessary.  The performance of 
neuro-fuzzy technology will continuously 
improve over time because neuro-fuzzy technolo-
gy can be constantly retrained as more cases 
accumulate.  Since a CANFIS possesses these 
advantages, it is more computationally intensive 
than other artificial intelligent models.  To obtain 
higher accuracy within a fixed amount of compu-
tational time, the flexible membership function 
and adaptive learning procedure may be further 
investigated.

In particular, we used limited clinical vari-
ables for constructing a workable neuro-fuzzy 
technology.  Neuro-fuzzy technology itself can 
deal with more input variables in predictive task 
and prune insignificant variables during the train-
ing process.  However, we selected only six vari-
ables that are usually measured in hemodialysis 
patients.  Our reason is that for any forecasting 
model to be useful in making clinical decisions, it 
should use only parameters that are readily avail-
able to the clinician at the time of triage (Chiu et 
al. 2005).  This is an essential issue since fewer 
inputs may simplify the process for clinicians in 
determining subsequent decisions rapidly (Bates 
et al. 2003).  On this basis the input variables we 
chose in this study not only contained the charac-
teristic of routine measurement in monthly dialyt-
ic workflow, but also possessed the individually 
physiologic meanings.  Age, which is determined 
from basic demographic data in the medical 
record, can be easily calculated.  In one study 
conducted by Mehrotra and colleagues (Mehrotra 
et al. 2004), the results showed that increasing age 
is inversely correlated with PTH in hemodialysis 
patients.  The diminished reactiveness of parathy-
roid glands is perhaps related to age-dependent 
accumulation of uremic toxins in elderly hemodi-
alysis patients.  In addition, nutrition has been 
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proposed to be involved as an additional factor in 
the expression of renal bone disease.  A higher 
PTH concentration has been associated with a 
normal albumin level in hemodialysis patients, 
implicating a better visceral and somatic protein 
status (Avram et al. 1996).  On the other hand, the 
nonlinear phenomenon of biological nature is rec-
ognized in medical investigations.  By virtue of 
inherent benefits of the neuro-fuzzy technique 
with built-in nonlinear functions, the linear 
adjustment between measured calcium concentra-
tion and albumin level can be avoided (Payne et 
al. 1973).  Taken together, low albumin level and 
increasing age reduce PTH secretion and are 
important factors of functional status of the para-
thyroid glands during maintenance dialysis (Heaf 
and Lokkegard 1998).  Hence, patient age and 
albumin level should be considered as part of the 
inputs in the neuro-fuzzy model.

Since the kidney plays a significant role in 
mineral homeostasis by preserving external bal-
ance for calcium and phosphorus, the occurrence 
of metabolic bone disease in patients with renal 
failure is expected.  Persistent phosphorus reten-
tion, together with a reciprocal fall in the concen-
tration of extracellular calcium, is associated with 
prolonged stimulation of PTH synthesis and 
secretion from the parathyroid glands in renal 
failure.  Decreased phosphorus excretion also 
reduces the levels of calcitriol, which may result 
in malabsorption of calcium, and further stimula-
tion of PTH secretion.  These continuously 
vicious effects may lead to nodular hyperplasia of 
the parathyroid glands with underexpression of 
the calcium-sensing receptor and the vitamin D 
receptor.  These hyperparathyroid cells lose criti-
cal components of the system to mount a proper 
reaction for elevated circumfused calcium con-
centration and/or suppressive input of calcitriol.  
The resulting secondary hyperparathyroidism, a 
main driver of renal bone disease, is in turn asso-
ciated with vascular and other soft tissue calcifi-
cation (Cunningham 2004).  In addition, the 
kidney is the major organ accounting for the 
excretion of β2-microglobulin and aluminum, 
substances involved in the induction of dialysis-
related amyloidosis and osteomalacia, respective-

ly.  On the other hand, elevated levels of the calci-
um-phosphorus product play a pivotal role in 
vascular calcification, calciphylaxis, and cardio-
vascular morbidity and mortality.  A lowering of 
levels such that the calcium-phosphorus product 
is below 55 mg2/dl2 might well be one of the ther-
apeutic management strategies in patients with 
renal  fai lure (Levin and Hoenich 2001).   
Therefore, assembling calcium, phosphorus, and 
calcium-phosphorus product provides an adequate 
merging utilization of input variables in building 
the model.

Alkaline phosphatase, a glycosylated protein 
produced by at least five different organs, is one 
of the most widely used noninvasive tests for 
clinical diagnosis of renal bone disease.  The level 
of alkaline phosphatase is suggestive of discrimi-
nation between hyperparathyroid bone disease 
and adynamic bone disease even though the mea-
surement of alkaline phosphatase is short of speci-
ficity for skeletal disease (Roe and Cassidy 2000).  
Bone-specific alkaline phosphatase can be utilized 
as a biochemical marker of bone formation to 
enhance the discriminatory ability among various 
subtypes of renal bone disease.  However, the 
measurement of bone-specific alkaline phospha-
tase is time-consuming and needs exhausting 
techniques to improve the sensitivity of this 
maker (Ferreira and Drueke 2000).  There are also 
insufficient evidence-based reports available to 
recommend the routine measurement of bone-
specific alkaline phosphatase (Martin et al. 2004).  
Therefore, bone-specific alkaline phosphatase is 
not ordinarily used as widely as alkaline phospha-
tase in every dialysis unit.  Correspondingly, a 
number of biochemical markers involving bone 
formation and resorption are increasingly evaluat-
ed in the diagnosis and monitoring of renal bone 
disease including osteocalcin, pyridinoline, 
tartrate-resistant acid phosphatase isoenzyme 5b, 
and osteoprotegerin etc (Ferreira 2000).  These 
biochemical markers might be encouragingly 
practical in the future but they are not currently 
easily achieved at the point of care, which may 
influence the model’s applicability and general-
ization.  Therefore, these laboratory-based bio-
markers are not appropriate for selection as our 
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neuro-fuzzy inputs.
To avoid the complexity of a model, it is not 

necessary to add other variables such as patient’s 
medications or dialytic prescriptions even though 
they are known to have a significant impact on 
PTH levels.  Several reports of the application of 
artificial intelligence in medicine indicate an 
excellent fit of the model to a given set of data (Rae 
et al. 1999; Oates et al. 2005).  Results that were 
too imposing usually were derived from overfitted 
models, where too many parameters were 
enrolled.  The challenge is to train a network to 
recognize patterns without overfitting, thus avoid-
ing model complexity for physicians.  We decided 
to use cross-section biochemical data as our input 
variables since we seldom use time-series data in 
daily practice.  When the cross-section method 
could not provide proper analysis or explain 
underlying phenomenon in nature, the application 
of a time-series method is considered to discover 
the latent pattern in the mining dataset that has the 
characteristic of time sequence.  In our study, we 
appropriately demonstrated that using neuro-
fuzzy technology with fewer, but important cross-
section variables, to forecast PTH levels in hemo-
dialysis patients is feasible.  Nevertheless, we will 
try to design a future study using a time-series 
database to investigate the influence of a longitu-
dinal dataset.

Facing rapid developments of information 
technology in clinical medicine, some physicians 
might hesitate to use this evolving application of 
a neuro-fuzzy system.  In fact, much artificial 
intelligence creation software also offers a func-
tion to package the trained neuro-fuzzy system 
into an executable file, and make it available on 
the Internet for anyone to download.  Our future 
study will focus on prospective multi-center 
implementations of a web-based platform using 
neuro-fuzzy technology as the kernel engine for 
clinicians to do an online prediction of the PTH 
level in hemodialysis patients.

In conclusion, this study supports neuro-
fuzzy technology for the prediction of plasma 
PTH concentration in hemodialysis patients as a 
useful tool that shows accuracy in different dialy-
sis units.  Furthermore, we hope that artificial 

intelligence may encourage clinical nephrologists 
to monitor PTH levels more frequently and lessen 
the impact of renal bone disease for hemodialysis 
patients in the future.
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