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Abstract

In this project, we proposed that
excitatory amino acids receptors, with
specific focus on the AMPA/KA receptors,
may exert its neurotrophic functions in
developing neurons via induction of release
of neurotrophic factors and activation of
neurotrophic factor receptors through EAA-
mediated activation of calcium-dependent
signa transduction cascades. We used
primary neurona cultures isolated from
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embryonic rat brain neocortex to apply
various concentrations of AMPA and KA for
the time-dependent and concentration-
dependent inductions of TrkA and TrkB

expressions. Furthermore, as we previously
showed that the induction of TrkA
expression is calcium dependent, the

involvement of a calcium-dependent kinase
cacium / camodulin-dependent protein
kinase (CaMK) was also examined. CaMK
inhibitor KN93 a 20 nM significantly
reduced the KA-increased TrkA expression.
This result coincided with the finding that

CaMKIl-activated transcription  factor
CAMP-response element binding protein
(CREB) can indeed increase its
phosphorylation upon KA  treatment.

Therefore, our results leads to the hypothesis
that the AMPA/KA receptors mediated
increase of TrkA expression may come from
the transcriptional activation of trkA gene
promoted by CREB in a calcium-dependent
manner.

Keywords: AMPA/KA receptors, kainic acid,
neurotrophin, calcium /
calmodulin - dependent protein
kinase
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The central aim of this project is to
elucidate the molecular and physiologica
mechanism regarding the neurotrophic
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functions of excitatory amino acid (EAA)
receptors in developing neurons. In
developing mammalian brain, the EAA
receptor subtypes AMPA/KA receptors and
the NMDA receptor display a sequential
participation in neuronal excitation (Ben-Ari,
1997). When reaching to the adult stage,
these ionotropic receptors mediate the
majority of rapid synaptic transmission, and
excessive degree of the receptor activation
may lead to neuronal cells death, known as
the glutamate excitotoxicity (Olney, 1986). In
developing brains, however, acritical level of
EAA receptor activation is required for
normal development (McDonald, 1993).

On the other hand, neuronal development
requires neurotrophic factors, such as
neurotrophins, to transduce specific signals
into the developing cells. Receptors for
neurotrophins, such as TrkA for nerve
growth factor (NGF), TrkB for brain-derived
neurotrophic  factor, and TrkC for
neurotrophin 3 (NT-3) and NT-4/5, consist of
a tyrosine kinase activity in the intracellular
domain, which is activated upon NT binding
and results in autophosphorylation (Bothwell,
1991; Kalaplan and Stephens, 1994). Ample
evidence has supported that EAA receptors
may work with neurotrophin receptors to
maintain activities required for neurona
development. For example, glutamate and
NGF were found synergistically promoting
survival of cerebellar purkinje cells (Cohen-
Corey, 1991). KA was found effective in
increasing BDNF and NGF mRNA levelsin
developing neurons (Zafra, 1990). In our
previous studies, KA was found initiating a
neuroprotective effect by a cacium-
dependent activation of TrkA in developing
cortica neurons (Lee, 2000). These
information provides a solid connection of
the function of EAA receptors to the
activation of the neurotrophin system during
devel opment.

In this project, we used primary cultured
cortical neurons to further examine the signa

transduction pathway and transcription
factors involved in KA-increased TrkA
expression. Invovement of  calcium-

dependent signal transduction pathways, such
as cacium/camodulin-dependent  protein

kinase (CaMK)-triggered protein
phosphorylation cascade and subsequent
transcriptional activation, was elucidated.
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Fig. 1 Efects of Gluamate Receptor Sublype Agonists (4)AMPA and
(B)KA on Intracelutar Calclion Level in Developing Cortical Nuerons.
Cultured cortical neurons on coverslips were loaded with SpM fura-2 and
fluorescent measurement of intracellular calcium was carrued out in a
dual excitation wavelength (340 and 380nM) spectrofluorocytometer.
AMPA and KA at 50uM were added at the time indicated (arrow head)
and incubated with cells for over 300 seconds.
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Fig. 3 AMPA-fnduced Cytosel Trkd Expression. (A) Cottical neurons
incubated with SopM of AMPA for 10min (2, 5), 30min (3, 5), and EBSS for
30min {1, 4) were then (i) harvested right away or (i} washed twice, incubated
with BME for 30 min, and harvested. Crude membrane fraction and cytosol
protein were subjected to Western blot by which TrkA expression was
examined. (B) The intensity of the bands shown in (A) was quantitated and
plotted as ratio to the mtensity of the coutrol group (A1),
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Fig. 2 AMPA-Induced Membrane Trid Expression, (A) Cortical neurons
incubated with 50uM of AMPA for 10min (2, 5), 30min (3, 6), and EBS$ for
10min (1, 4} were then (i) harvested right away or (ii) washed twice, ncubated
with BME for 30 imin, and harvested Crude membrane fraction and cytosol
protein were subjected 1o Western blot by which Trka expression was
examined. (B) The intensity of the bands shown in (A} was quantitated and
piotted as ratio Lo the intensity of the contrel group (A 1.
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Fig. 4 KA-Induced Membrane TrkA Expression. (A) Cortical neurons
incubated with S0uM of KA for 10min ¢2, 5), 30min (3, 6), and EBSS for
30min (1. 4) were then () harvested right away or (i) washed twice,
incubated with BME for 30 min, and harvested. Crude membrane fraction
and ¢¥iosol protein were subjected to Western blot by which TrkA
expression was examined. (B) The intensity of the bands shown in (A}
was quantitated and plotted as ratio to the intensity of the conbrol group
(A1),
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Fig. § EA-Induced Cytesol Trkd Expression. (A) Cortical neurons
incubated with 30pM of KA for LOnin (2, 5), 30min (3, 6), and EESS for
30min (1. 4) were then (i) harvested right away or (i) washed twice, incubated
with BME for 30 min, and harvested. Crude membrane fraction and ¢ytosol
protein were subjected to Western blot by which TrkA expression was
exarnined. (B) The intensity of the bands shown in (A) was quantitaled and
plotted as ratie to the intensity of the control group (A1)
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Fig. T Nuclelc p-CREB Expression in Prolonged KA Treatment. (A) nuclei
protein obtained afler drug treatment as Fig T{A} shows was subjected to
Western blot by which phospho-CREB expression was examined. (B) The
intensity of the bands shown in (A) was quanditated and plotted asratioto the
intensity of the control group {(Al).
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Fig. § Membrane ivkd Expression in Prolonged KA Treatment. (A)
Corlical neurons were treated with 10pM of KN-93. 50pM of KA, or
EBSS under four conditions as the table shows. (B) Membrane protein
obtained after drug treatment was subjected to Westem blot by which
TrkA Expression were examined. () The intensity of the bands shown in
(B) was quaititated and plotted as ratio to the intensity of the control group
(B1).
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Fig. 8 Cyioselic CREB Exprestion in Prolonged KA Treatment. (A}
Cytosolic protein obtained afier drug treatment as Fig.7(A) shows was
subjected ta Western blot by which CREB expression were examnined. (B) The
irtensity of the bands shown in {A) was quantitated and plotted as ratio to the
intensity of the control group (A1)
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Fig. 9 tyiosolic p-CREE Expression in Prolonged KA Treatment (A) Fig, 11 Nucleic p-CRER Expression bu Arigf KA Treatment (4) Nuclsi
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Fig. 10 Membrene Trkd Exprossion in Brigf KA Treatment. (AY Cortical
neurens were treated with 10uM of KN-93, 50u% of KA, or EBSS under four
conditions as the table shows. (B) Membranc protein obtained after drug
treatment was subjected to Western blot by which TekA expression were
examined. (C) The intensity of the bands shown in (B) was quantitated and
plotted as ratio to the intensity of the controi group (A1),

Fig. 12 Cyesolic CREE and Expression in Brigf KA Treatment, (A)
Cytosolic protein obtained after drug treatment as Fig. 1L{A) shows was
subjecled to Westem blot by which CREB expression were examined. (B)
The intensity of the bands shown in (A) was quantitated and plotted as ratio
to the intensity of the control group {Al).
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Fig. 13 Cytosolic p-CREB Expression in Brigf KA Treatment. (A) Cytosolic
protein obtained after drug treatment as Fig.11(A) shows was subjected to
Western blot by which phospho-CREB expression were examined. (B) The
intensity of the bands shown in (A) was quantitated and plotted as ratio to the
inteneity of the control group {(Al).

Fig. 14 Deducsd Mechanism of KA indicced-YrkA Expression in
Developing Cortical Newrons. The sequence of sverts is as follows.
KA activaless AMPA/KA receptors jom channels, resulting in calciten
influx, Calcium activates CaMK I followed by CREB
phosphorylation and transiocation from eytesol 1o nuclel. AND
phospho-CREB activates transcription of TrkA or NGF mRNA which
lead to inerease of TrkA protein expression.
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