
A Robust Wireless Transmission Control Protocol to Cope with
Channel Errors in a Long Round-Trip Delay Environment1

Shu-wen Teng

VIA Technologies, Inc. - 533 Chung-Cheng Road 8F., Hsin-Tien, - Taipei 231, Taiwan
 e-mail: KellyTeng@via.com.tw

Jin-Fu Chang2

National Chi Nan University - Department of Electrical Engineering - Puli, Nantou, Taiwan 545
 e-mail: jfchang@ncnu.edu.tw

1This work is performed while the authors were with the Graduate Institute of Communication Engineering, National Taiwan
University, Taipei, Taiwan 10764. Presentation of this paper is made possible by a grant from the National Science Council,
Taiwan (NSC 91-2219-E-260-001).
2 Corresponding author

0-7803-7661-7/03/$17.002003 IEEE

ABSTRACT

Extending the TCP (transmission control protocol) to the
wireless domain is a hot research topic at the present time. It
is also implemented in a long round-trip delay, e.g., satellite,
channel. Performance degradation due to TCP’s
misinterpretation of corruption loss as congestion loss has
been reported in the literature. This paper proposes a
threshold-based TCP to prevent it from reacting to cell losses
due to corruption, that is, channel error. It is demonstrated
through numerical experiments that the proposed scheme can
effectively mitigate the negative impact of wireless channel
errors on the performance of TCP.

1. INTRODUCTION

A. Motivation

As we have marched into the second year of the twenty-first
century, it is more clear then ever that computer networks has
become an inalienable part of human civilization. Computer
systems are weaved through communication facilities to form
a networked cyberspace. Nowadays, a computer system does
far more than its traditional role of data crunching and word
processing. Networked computers provide us with a cyber-
world of info-diversity. A good wealth of multimedia and on-
demand contents has been cultivated in the Internet cyber-
land. A far apart website is merely one click away. But how
does the task of networking eventually become a reality? A
crucial ingredient clearly is the sophisticated communication
protocols that make different computer systems talk to each
other.
 Communication protocols are structured into the division-
of-labor layers so that each layer is commissioned a unique
responsibility. Although different layers are independent and
non-interfering, they are stacked together to form a function-
able suite so that a lower layer protocol serves the one sitting
on its top.
 In the family of protocols, TCP/IP (transmission control
protocol/ internet protocol) undoubtedly is the builder of the

Internet. TCP is responsible for congestion control whereas
IP takes care of routing.
 Although TCP/IP was originally engineered for wired
links which are nowadays mostly optical fiber lines. It has
been implemented in both terrestrial and satellite wireless
channels. To extend TCP/IP from the scope of wired links to
radio channels, modification is a mandate and has been
enthusiastically pursued by researchers recently. In this paper,
we concentrate on the discussion of wireless TCP in a long
round-trip time environment such as a satellite channel.
 A contrast between an optical fiber link and a radio link
lies in their degree of cleanness and serenity. An optical fiber
link nowadays is almost immune to channel errors; while a
radio channel is contaminated by not only all kinds of noise
but also fading induced largely by multi-path interference.
That is to say packet or cell losses due to irrecoverable
channel errors are almost nonexistent in a wired link but do
exist in a radio channel. Cell losses are perceived by TCP as
indication of congestion and should be acted upon. If TCP is
utilized in the wireless world without modification,
corruption losses are misinterpreted as congestion losses and
overreacted then the throughput performance of TCP is
seriously harmed. This phenomenon of performance is now
widely recognized, e.g. [1]-[3], and needs to be cured. A
number of remedial measures have also been proposed, e.g.
[1]-[3]. The purpose of this paper is to propose a novel
threshold-based wireless TCP that is simple but efficient.
This threshold-based scheme is designed to fit a long round-
trip time such as satellite environment.
 In a link routed through a geo-synchronous satellite, the
round trip propagation delay maybe as long as 558 ms. Even
in the environment of LEO (low earth orbit) or MEO
(medium earth orbit) satellites, the delay may range from
several mini-seconds to 80 ms.

B. A Quick Look at TCP
It is not the purpose of this paper to furnish a thorough
review of TCP. Rather we shall take only a quick look at its
spirits. Please consult [4] for detailed description of TCP.
 TCP is hung at the fourth or transport layer of OSI (open
system interconnect)’s 7-layer structure. It sits on top of IP.

TCP/IP is the soul of Internet. TCP performs both error and
congestion control via the routing services provided by IP to
create a reliable connection oriented data services to support
a wide variety of Internet applications.
 TCP’s error control is accomplished through a sliding
window mechanism in conjunction with positive
acknowledgements and retransmission timeouts. Although
congestion control is also handled by the network layer, it is
mostly handled by TCP. TCP controls congestion through
two windows: the advertised window at the receiving end
and the congestion window at the sending end. TCP uses two
phases, slow start and congestion avoidance, to adjust the
width/size of the congestion control window denoted by
cwnd.
 Switch from slow start to congestion avoidance is
controlled by the parameter ssthreshold in which ss stands for
slow start. Another important parameter affecting the
performance of TCP is the retransmission time out (RTO).
TCP uses sampled round trip times (RTTs) to adjust the RTO.
 We wish to point out that irrecoverable lost packets are
treated by TCP as indications of congestion and acted upon
by shrinking cwnd to 1 whenever congestion is detected.
 To expedite recovery of lost packets a modified TCP with
fast retransmit and fast recovery is proposed [5].
 Since the original TCP was invented [4], a good variety
of TCP modifications have been proposed. They include TCP
Tahoe [5], TCP Reno [5], TCP New Reno [6], TCP SACK
[7], TCP Vegas [8], TCP Westwood [9], and etc. A common
goal of these different versions of TCP is to seek better
throughput performance.

C. Prior Works

We have pointed out earlier that in extending the operation of
TCP from a clean wired medium to a noisy radio channel, a
potential harm is that corruption losses, i.e., packet losses due
to channel errors, are misinterpreted as congestion losses and
wrongly acted upon by the congestion control of TCP. This
problem has been widely recognized and a number of cures
have been proposed.
 The cure can be arranged in at least either of the
following two directions or a combination of both: link layer
enhancements and TCP layer enhancements.
 Enhancements at the link layer maybe done through
either forward error correction (FEC) or automatic repeat
request (ARQ) or a hybrid of them. Note that link layer
resides at the second of the 7 layers of OSI and enhancement
at this layer aims at curing channel impairment done on
individual packets. Error control at the link layer has been
very thoroughly treated by the research community and is not
the focus of this paper.
 At least two kinds of enhancement at TCP layer have
been proposed: split-connection protocol and end-to-end
protocol [1]. The idea of split-connection is to split an end-
to-end TCP connection into a wired plus a wireless sub-
connection by placing a TCP agent at the router that
separates these two sub-connections. It is the TCP agent not
the sender that handles retransmission of lost packets in the
wireless channel. When a packet sent from sender arrives at
the agent an ACK is returned to the sender as if the agent
were the end of the connection. In other words, a TCP
connection is essentially split into two independently run

TCP connections. This approach is called indirect TCP [1]. A
similar approach is called snoop TCP [1] . The end-to-end
feature is maintained in snoop TCP meaning that the TCP
connection is not terminated at the agent. The duplicate of a
packet received from sender by the agent is stored at the
agent and no ACK is returned. Non-duplicate ACK returning
from receiver is forwarded to sender; but duplicate ACKs are
intercepted by the agent and retransmission of corruption
losses is taken care by the agent. The agent is further
equipped with a timer to estimate if a packet has timed out at
sender so that retransmission can start earlier at the snoop
agent. Clearly, this snoop TCP also has a split-correction
nature.
 In the end-to-end protocol, the idea is to try to distinguish
congestion losses from corruption losses. Whenever a
corruption loss is detected, the TCP layer is prevented from
taking any congestion avoidance action.
 The rest of this paper is organized as follows. In sec. II,
we propose a threshold-based scheme to differentiate
corruption from congestion losses. In Sec III we conduct a
series of numerical experiments to demonstrate that the
throughput performance of a TCP connection is indeed
unaffected by the presence of a wireless channel. Finally,
conclusions are given in section IV.

2. A THRESHOLD-BASED SCHEME TO DIFFERENTIATE
CORRUPTION FROM CONGESTION

If we are able to differentiate corruption from congestion
losses, the congestion control mechanism of TCP does not
have to be invoked in the wake that corruption losses are
detected. In other words cells lost due to channel errors are
retransmitted, mostly at the data link layer, without adjusting
the congestion window.
 In the operation of TCP, the sampled rtt is used to trigger
the adjustment of congestion window. When rtt gets larger,
the congestion window has to be made smaller; and vice
versa. Let us demonstrate a relationship between rtt and cwnd
by performing an experiment for a simple TCP connection
using the Network Simulator [10] developed at the Lawrence
Berkeley Laboratory. The result is plotted in Fig. 1 where
one sees a strong correlation between the behavior of rtt and
cwnd. In Fig. 1 (the sampled) rtt is expressed in terms of the
number of TCP ticks and the value of a TCP tick is set at
0.01sec.
 The correlation between rtt and cwnd seems to suggest
that as long as rtt is small the corresponding TCP connection
is not very likely to fall into congestion and cell losses
henceforth are due mostly to channel errors. This then gives
an idea to use a threshold to differentiate congestion from
corruption. If rtt appears to be smaller than this threshold
then losses are interpreted as corruption and otherwise. Each
TCP connection has a minimal rtt value known as the base rtt.
The threshold must be chosen to be larger than this base rtt.
How large a threshold should be will be answered when we
present numerical experiments.
 This threshold-based approach is very easy to implement
and involves very little modification to the original TCP
design. It requires only two extra memory spaces at the
sending end to store the base rtt and the threshold; and a
simple comparison with the threshold.
 For that TCP Reno is the most widely used version of
TCP, we shall in the sequel use it for the purpose of

demonstrating our idea. But our approach is definitely
applicable to any version of TCP.

3. NUMERICAL EXPERIMENTS

We shall in the following examine how our proposed
threshold-based scheme behaves to react to congestion losses
through numerical experiments conducted on the Network
Simulator. In these experiments the following three channel
error rates are tried: 10-5, 10-6, and 10-7. We consider a
continual transmission of a large file, that is, a typical FTP
application. Each simulation run continues for a period of
100 sec. The round trip signal propagation time is in the
order of 500ms to emulate a satellite link.

A. Single Connection Case

We use Fig. 2 to demonstrate the behavior of cwnd before
and after the application of the threshold scheme. In this
figure the threshold is set at 550 ms or 55 TCP ticks. The
difference is clearly noticed.
 In Fig. 3, we plot the throughput performance versus
threshold value for BER (bit error rate)= 10-5, 10-6, and 10-

7.In this figure, base rtt is equal to 51 TCP ticks. We observe
first that in each BER throughput performance improves as
the threshold value is pushed up. Second, throughput
performance already gets significant improvement when the
threshold is put at 53 and starts to level off when the
threshold is pushed further. Third, the improvement is most
profound in BER=10-5, then 10-6 and 10-7. This trend is of
course reasonable.

B. Plural Connection Case

We have also conducted simulations for the case of two and
three connections. Similar trends are seen in these
experiments. Figs. 4-7 are results we have obtained.

We show in Fig. 8 the performance of our proposed
threshold scheme in a short delay environment where the
round trip time is 50ms and the base rtt is set at 6 TCP ticks.
We again observe the improvement in throughput due to the
implementation of a threshold scheme.

C. No Disruption to the Performance of a wired TCP
connection

We use Fig. 9 to demonstrate that our threshold scheme
causes no disruption to the performance of a wired
connection.

4. Conclusions

We have in this paper engineered a threshold-based TCP to
prevent it from reacting to losses due to channel errors for a
long round-trip delay environment. This design involves only
very minor modification to the current TCP design. Through
extensive numerical experiments we have conducted one

indeed witness the mitigation of the negative impact of
channel errors on the behavior of TCP. We further
demonstrate that our proposed scheme brings no disruption to
the performance of a wired TCP connection.
 Whether this threshold-based idea works for a very short
delay environment such as terrestrial mobile remains to be
investigated.
 In the real world, an environment containing long and
short delay TCP connections in which the problem of
fairness arises needs to be dealt with. This is an issue remains
to be investigated.

REFERENCES

[1] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, and R.H.

Katz “A Comparison of Mechanisms for Improving TCP
Performance over Wireless Links,” IEEE/ACM
Transactions on Networking, Volume 5, no. 6 , pp. 756 –
769, Dec. 1997.

[2] M. Allman, D. Glover, and L. Sanchez, “Enhance TCP
Over Satellite Channels using Standard Mechanisms,”
RFC 2488, January 1999.

[3] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T.
Henderson, J. Heidemann, J. Touch, H. Kruse, S.
Ostermann, K. Scott, and J. Semke, “Ongoing TCP
Research Related to Satellite,” RFC 2760, Feb. 2000.

[4] J. Postel “Transmission Control Protocol,” STD 7, RFC
793, September 1981.

[5] W. R. Stevens, “TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms, ” RFC
2001, January 1997.

[6] S. Floyd and T. Henderson, “The NewReno Modification
to TCP’s Fast Recovery Algorithms, ” RFC 2582, April
1999.

[7] M. Mathis, J. Mahdavi , S. Floyd, and A. Romanow,
“TCP Selective Acknowledgement Options,” RFC2018,
October 1996.

[8] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to
End Congestion Avoidance on a Global Internet,” IEEE
Journal on Selected Areas in Communications, Vol. 13,
No. 8, pp. 1465 -1480, October 1995.

[9] A. Zanella; G. Procissi, M. Gerla, M.Y. Sanadidi, “TCP
westwood: Analytic Model and Performance Evaluation,”
IEEE Global Telecommunications Conference, 2001, pp.
1703 –1707.

[10] Network Simulator, http://www-nrg.ee.lbl.gov/ns/.

Fig. 1. Relationship between rtt and cwnd.

0
10
20
30
40
50
60
70
80
90

100
110
120
130

0 10 20 30 40 50 60 70 80 90 100

time

cwnd

Fig. 2 (a)

0
10
20
30
40
50
60
70
80
90

100
110
120
130

0 10 20 30 40 50 60 70 80 90 100

time(sec)

cwnd

Fig. 2 (b)

Fig. 2. The behavior of cwnd before and after applying the
threshold scheme for the case of single TCP connection: (a)
before and (b) after.

0

10

20

30

40

50

60

70

51 52 53 54 55 56 57 58 59 60

threshold

(%)

BER=e-5
BER=e-6
BER=e-7

Fig. 3. Throughput performance versus threshold value for
single TCP connection under BER=10 ,10 , and 10 . 5− 6− 7−

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 10 20 30 40 50 60 70 80 90 100

time(sec)

cwnd

cwnd1
cwnd2

Fig. 4 (a)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 10 20 30 40 50 60 70 80 90 100

time

cwnd

cwnd1
cwnd2

Fig. 4 (b)

Fig. 4. The behavior of cwnd before and after the application
of the threshold scheme for the case of two connections: (a)
before and (b) after.

throughput

0

10
20

30

40

50
60

70

80
90

100

51 52 53 54 55 56 57 58 59 60

threshold

%

BER=e-5
BER=e-6
BER=e-7

Fig. 5. Throughput performance versus threshold value for
two TCP connections under BER=10 ,10 , and 10 . 5− 6− 7−

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

time(sec)

cwnd

cwnd1
cwnd2
cwnd3

Fig. 6 (a)

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

time(sec)

cwnd

cwnd1
cwnd2
cwnd3

Fig. 6 (b)

Fig. 6. The behavior of cwnd before and after applying the
threshold scheme for the case of three connections: (a) before
and (b) after.

throughput

0
10
20
30
40
50
60
70
80
90

100

51 52 53 54 55 56 57 58 59 60

threshold

%
BER=e-5
BER=e-6
BER=e-7

Fig. 7. Throughput performance versus threshold value for
three TCP connections under BER=10 ,10 , and 10 . 5− 6− 7−

throughput

0

10

20

30

40

50

60

70

80

90

100

6 7 8 9 10 11 12

threshold

%

BER=e-5

BER=e-6

BER=e-7

Fig. 8. Throughput performance versus threshold value for a
short delay environment.

cwnd

0

50

100

150

200

250

0 10 20 30 40 50

time(sec)

pkt

Fig. 9 (a)

cwnd

0

50

100

150

200

250

0 10 20 30 40 50

time(sec)

pkt

Fig. 9 (b)

Fig. 9. The behavior of cwnd before and after the applying
the threshold scheme for a wired connection: (a) before and
(b) after.

	Motivation

