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Syndecan-3 (N-syndecan) is one of the four mammalian syndecans and it is mainly expressed
in the nervous system, especially during development. Syndecan-3 has one transmembrane domain,
a short cytoplasmic tail of 34 amino acids, and an extracellular domain that carries heparan sulfate
chains. Syndecans have been suggested to function as coreceptors with other signaling receptors,
such as FGF receptors and integrins. It has been suggested to function in cell adhesion, neurite
guidance, and cell migration during development of the nervous system. Syndecan-3 has also been
implicated in the regulation of synaptic plasticity in the hippocampus. Syndecan-3 is expressed in
an activity-dependent manner in the CAl pyramidal neurons, and application of exogenous
syndecan inhibits the induction of longterm potentiation (LTP). Heparin binding neurotrophic
factor/ Pleiotrophin (HBNF/PTN) was first isolated as a heparin-binding protein that was eluted
from a heparin affinity column with high salt concentration. Such a high affinity-binding property
suggests that heparin or heparin-type carbohydrates may play important roles in the biological
function of HBNF/PTN. Syndecan 3 heparan sulphate chains bind to fibroblast growth factor- 2
(FGF-2) and heparin-binding growth-associated molecule (HB-GAM; also known as pleiotrophin).
Both the heparan sulfate side chains of syndecan-3 and polyclonal anti-syndecan-3 inhibit
HBNF/PTN-induced neurite outgrowth in the cultured neurons. In addition to syndecan-3 heparan
sulfate, the low molecular weight heparin displays more potent inhibition of HBNF/PTN-induced
neurite outgrowth. Indeed, further studies demonstrate that a transmembrane heparan sulfate

proteoglycan, syndecan-3, acts as a receptor for HBNF/PTN.

In our previous study, we established an in vivo neurite outgrowth assay in zebrafish embryos
that provided a direct observation of HBNF-induced neurite outgrowth from GFP-labeled neurons
during zebrafish development. Therefore, in this proposal, we will analysis zSyn-3 function during

zebrafish development. Specific aims are listed below:

(1) Co-transfection of HBNF and wild-type or cytoplasmical truncated form of zSyn-3 (dS3) into
PC12 cells, cellular co-localization and ligand-receptor interaction will be studied by
comparison of ability to induce neurite outgrowth with transfection HBNF only or
co-transfection of HBNF and zSyn-3 (wt or dS3) will also be investigated.

(2) In the experiment of loss-of-function, morpholino oligonucleotide (MO) technology will be
applied. Through coinjection of zSyn-3 MO and HBNF/HuC-GFP, the effect of knockdown
syndecan-3 expression on HBNF-induce of neurite outgrowth will be investigated.

(3) Previously, we demonstrated that HBNF could induce neurite outgrowth in zebrafish
embryos. The HBNF-induced neurite outgrowth will be further studied by coinjection of
zSyn-3 under the control of different promoters, such as CMV, glia-specific GFAP promoter

and neuron-specific HuC promoter.



(4) We will expression of cytoplasmical truncated form of syndecan-3 (dS3) under the control of
different promoters, such as CMV, glia-specific GFAP promoter and neuron-specific HuC

promoter to analysis syndecan-3 (zSyn-3) function during zebrafish development.

Introduction:

The heparan sulfate proteoglycans (HSPGs) play the important roles in a variety of
biologic processes such as early embryonic patterning, morphogenesis, and disease.( Forsberg and
Kjellen, 2001; Nybakken and Perrimon, 2002; Selleck, 2001). The biological function of HSPGs is
often achieved through modulation of growth factor-mediated signaling. In Drosophila studies have
shown that loss-of-function mutations in genes encoding membrane-anchored HSPGs, the glypicans
dally and dally-like, and in genes encoding enzymes involved in biosynthesis of HSPGs
compromise signaling pathways mediated by growth factors such as Wingless (Wg),
Decapentaplegic (Dpp), Fibroblast growth factor (FGF), and Hedgehog (Hh).( Nybakken and
Perrimon, 2002; Lin and Perrimon, 1999; Tsuda et al., 1999; Baeg, et al., 2001). In vitro studies
have also demonstrated the requirement of syndecan-4 in FGF-2—induced biologic response
(Horowitz, et al., 2002) and dally-like in the activation of a Hedgehog - mediated signaling pathway
( Lum, et al., 2003).

Syndecan family

The syndecan family of transmembrane proteins comprises a major class of cell surface
heparan sulfate proteoglycans (HSPGs). Currently, four members have been identified in mammals:
syndecan-1, syndecan-2  (fibroglycan), syndecan-3  (N-syndecan), and syndecan-4
(ryudecan)(Bernfield et al., 1992; David, 1993; Carey, 1997). The extracellular functions of
syndecans are primarily mediated by their heparan sulfate (HS) or glycosaminoglycan (GAG) side
chains, which have affinity for a wide variety of secreted molecules and extracellular matrix (ECM)
components.(Bernfield et al., 1992; David, 1993; Schlessinger et al., 1995; Couchman and Woods,
1996; Carey, 1997;). HSPG are known to regulate cell adhesion, cell migration, differentiation,
and growth factor signaling (Bernfield, 1999; Sanderson, 2001; Yamaguchi, 2001). They are
abundant on most cell surfaces and are involved in a wide range of cell-cell and cell-matrix
interactions.

In the nervous system, HSPGs are involved in neurogenesis, neurite guidance,
synaptogenesis, and synaptic plasticity (Yamaguchi, 2001). The syndecan-1 was expressed in the
developing rat neural tube (Nakanishi et al.,1997). The syndecan-4 was expressed in the
neuroepithelium and its expression was much lower than syndecan-1. Syndecan-2 and syndecan-3
show contrasting expression profiles during development and segregated distribution within
neurons. Syndecan-3 is more highly expressed in developing brain and concentrated in axons.
Syndecan-2 is more strongly expressed in mature brain and localized in synapses (Hsueh and
Sheng, 1999; Yamaguchi, 2001). Syndecan-3 is expressed at higher levels when compared with
syndecan-2 and is found on neuronal processes throughout the neural tube. The syndecan-3 have
shown that this HSPG is most prominently expressed in differentiated regions in the developing
mouse and chick brain (Carey et al., 1992; Gould et al., 1995; Kinnunen et al., 1998; Hsueh and
Sheng, 1999). But, not much is known about which syndecans are specifically expressed in

neurons, how they are distributed at the subcellular level, and how their expression patterns are



regulated during development of the nervous system.

Syndecan-3 (N-syndecan) is one of the four mammalian syndecans and it is mainly
expressed in the nervous system, especially during development (Carey et al., 1997). Syndecan-3
has one transmembrane domain, a short cytoplasmic tail of 34 amino acids, and an extracellular
domain that carries heparan sulfate chains (Carey et al., 1997). Syndecan-3 heparan sulfate chains
bind to fibroblast growth factor-2 (FGF-2) (Chernousov and Carey, 1993) and heparin-binding
growth-associated molecule (HB-GAM) (Raulo et al., 1994). Syndecans have been suggested to
function as coreceptors with other signaling receptors, such as FGF receptors and integrins. It has
been suggested to function in cell adhesion, neurite guidance, and cell migration during
development of the nervous system (Raulo et al., 1994). Syndecan-3 has also been implicated in
the regulation of synaptic plasticity in the hippocampus (Lauri et al., 1999). Syndecan-3 is
expressed in an activity-dependent manner in the CAl pyramidal neurons, and application of

exogenous syndecan inhibits the induction of longterm potentiation (LTP) (Lauri et al., 1999).

Heparin binding neurotrophic factor/Pleiotrophin (HBNF/PTN)

Heparin binding neurotrophic factor/Pleiotrophin (HBNF/PTN) HBNF/PTN was first
isolated as a heparin-binding protein that was eluted from a heparin affinity column with high salt
concentration (Rauvala, 1989). Such a high affinity-binding property suggests that heparin or
heparin-type carbohydrates may play important roles in the biological function of HBNF/PTN.
Indeed, further studies demonstrate that a transmembrane heparan sulfate proteoglycan, N-syndecan
(syndecan-3), acts as a receptor for HBNF/PTN (Merenmies and Rauvala,1990).

Heparin-binding neurotrophic factor or neurite-promoting factor (HBNF) was first
co-purified with bovine acidic fibroblast growth factor from brain tissues (Rauvala, 1989). It is a
secretory heparin-binding protein with highly basic and cysteine-rich amino acid residues. In
addition to neurite outgrowth promotion, HBNF also has a variety of biological activities, such as
stimulating cell growth, acting as an angiogenesis factor, and containing oncogenic activity (Deuel,
et al, 2002). Therefore, it is also known as pleiotrophin (PTN) (Li, et al., 1990) and heparin-binding
growth-associated molecule (HB-GAM) (Merenmies and Rauvala, 1990). It has been proposed that
HBNEF/PTN is evolutionally conserved according to the published sequences from various species
(Bohlen and Kovesdi, 1991). In our previous study, we established an in vivo neurite outgrowth
assay in zebrafish embryos that provided a direct observation of HBNF-induced neurite outgrowth
from GFP-labeled neurons during zebrafish development (Chang, et al., 2004).

Zebrafish

Zebrafish is a good model organism for the study of vertebrate development (Penberthy et
al., 2002; Rubinstein, 2003). The embryos develop outside the mother and are optically transparent,
allowing direct observation of their embryonic development that takes only 48 hours for completion
at 28 C. We have cloned several zebrafish tissue-specific promoters including pancreatic-, neuron-,
and muscle-specific promoters. Their tissue specificies of gene expression were confirmed by
expression of GFP in zebrafish embryos. Therefore, these tissue-specific promoters could be used to
drive GFP or RFP expression in zebrafish embryos. In general, it is common to investigate the
function of known or novel genes by gain-of-function and loss-of-function in zebrafish. To achieve

gain-of-function, genes of interest are driven by tissue-specific promoters and injected into one-cell



zebrafish embryos (Gong et al., 2001). Alternatively, the expression constructs under the control of
either ubiquitous or tissue-specific promoter were co-injected with tissue-specific promoter/GFP
construct. On the other hand, to achieve loss-of-function, genes of interest are knock-downed by
injection of morpholino antisense-oligonucleotides (MAO) or co-injection of MAO with
tissue-specific promoter/GFP construct (Nasevicius and Ekker, 2000; Urtishak et al., 2003). The
suitable transgenic GFP/RFP zebrafishes also can be used to inject MAO or expression constructs,
respectively.

However, the complete zebrafish syndecan-3 transcript has not been reported. In this study,
we will clone the full-length cDNA of zebrafish syndecan-3 mRNA, express the zsyn-3 gene and
determine its genomic structure. The biological activity of zZSyn-3 will assay in PC12 cells as well
as further analyze the interaction of HBNF/PTN and zSyn-3 in zebrafish embryo.

In our previous study, we established an in vivo neurite outgrowth assay in zebrafish
embryos that provided a direct observation of HBNF-induced neurite outgrowth from GFP-labeled
neurons during zebrafish development. Therefore, in this proposal, we will analysis zSyn-3 function
during zebrafish development. Specific aims are listed below:

(1) Co-transfection of HBNF and wild-type or cytoplasmic truncated form of zZSyn-3  (dS3) into
PC12 cells, cellular co-localization and ligand-receptor interaction will be studied by
comparison of ability to induce neurite outgrowth with transfection HBNF only or
co-transfection of HBNF and zSyn-3 (wt or dS3) will also be investigated.

(2) In the experiment of loss-of-function, morpholino oligonucleotide (MO) technology will be
applied. Through coinjection of zSyn-3 MO and HBNF/HuC-GFP, the effect of knock-down
syndecan-3 expression on HBNF-induce of neurite outgrowth will be investigated.

(3) Previously, we demonstrated that HBNF could induce neurite outgrowth in zebrafish
embryos. The HBNF-induced neurite outgrowth will be further studied by coinjection of
zSyn-3 under the control of different promoters, such as CMV, glia-specific GFAP promoter
and neuron-specific HuC promoter.

(4) We will expression of cytoplasmic truncated form of syndecan-3 (dS3) under the control of
different promoters, such as CMV, glia-specific GFAP promoter and neuron-specific HuC

promoter to analysis syndecan-3 (zSyn-3) function during zebrafish development.
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Result
Expression profiles of zebrafish syndecan-3(zSyn-3) mRNA in adult tissues

In order to determine the expression pattern of zebrafish zZSyn3 mRNA by RT-PCR, zebrafish
embryos at various tissues from adult zebrafish were collected and used to isolate total RNA for
cDNA preparation. Our data showed that the zZSyn3 mRNA was expressed in brain, eye, heart,
intestine and kidney (Fig.1). The expression of -actin transcript was also determined as well and

served as internal control (Fig.1).
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Construction of expression clones from zebrafish cDNA

Syndecan-3 has one transmembrane domain, a short cytoplasmic tail of 34 amino acids, and
an extracellular domain that carries heparan sulfate chains. We have cloned the full-length zSyn3
cDNA from zebrafish. RT-PCR analysis revealed that zebrafish zSyn3 transcript was highly

expressed in adult brain, eye and intestine tissues while less in other tissues.

Phenotype of cellstransiently transfected with Syn3

In order to study the function of the syndecan-3 protein, transient transfection experiments
were performed in COS-1 cells (Fig. 2). Cells were transfected with the full-length syndecan-3
(zSyn3-HA) or with the deletion of the entire cytoplasmic domain (zSyn3dC-HA), fixed 48 h
post-transfection and immunolabeled with monoclonal anti-HA antibody. Analyzed by confocal
microscopy, strong membrane staining was observed in the syndecan-3 transfected cells, while the
deletion of the entire cytoplasmic domain abolished the membrane staining. This result indicates

that syndecan-3 located to the membrane.

Fig. 2 BF HA HA+DAPI  Merged

zSyn3-HA ,_

ZSyn3dC-HA




Differential expression of zZSyn3 mRNA during embryogenesis

In order to elucidate the role of zebrafish Syn3 in the development of the nervous system,
we examined the temporal and spatial patterns of zSyn3 expression using whole-mount in situ
hybridization. In 12, 24, 48, 72, 96, and 120 hpf embryos (Fig. 3, panels A to F), zsyn3 mRNA was
expressed predominantly in the developing neural structures including eye, forebrain, midbrain, and

hindbrain, which is consistent with our previous data that zebrafish syn3 expressed in adult brain

(Fig. 3).
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Effects of zSyn3 knockdown during zebrafish development

To reveal the function of zSyn3, we prepared antisense morpholino oligonucleotides (MOs)
against the translational initiation site (zSyn3-MO) of the zSyn3 gene. Injection of zSyn3-MO
inhibited the translation of zSyn3 protein (Fig. 4). The injection zSyn3-MO, led to reduction or

truncation of the posterior body; these effects were more severe than control (Fig.4).
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