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The studies of the role of JAK-STAT on oxidized low-density
lipoprotein-induced microglia activation and comparison of the
deleterious effects between different oxidative degree of low-density
lipoproteins on stroke (1/3)
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(IV) The studies of the role of JAK-STAT on oxidized
low-density lipoprotein-induced microglial activation and
comparison of the deleterious effects between different
oxidative degree of low-density lipoproteins on stroke

Microglia, the resident macrophage of the brain, mediates immune
and inflammatory responses in the central nervous system. Activation of
microglia and secretion of inflammatory cytokines associated with the
pathogenesis of degenerative diseases. Oxidized low-density lipoprotein
(LDL) is believed to play as a critica and important role in various
cellular processes involved in the progression of atherogenesis. Therefore,
we will especially focus on the role of microgliain the oxL DL-associated
stroke. Oxidized LDL is an activator of macrophage and microglia for
cytokines and nitric oxide production. Signaling may through its
scavenger receptor, and activation of Janus kinase and signal transducer
and activator of transcription (JAK-STAT) pathway in microglia cells.

According to our findings, various cation-induced oxidation of LDLs had



different effects. Especialy, non-dialyzed copper-catayzed LDL could
induce nitric oxide production and iINOS expression in microglia. It aso
have less cytotoxic to microglia as compare to ferrous-catalyzed LDL.
Therefore, the mechanisms of nitric oxide synthase or cytokines induction
by copper-catalyzed oxidized LDL will be clarified, including JAKS,
STATSs and phosphatase.

Key words : microglia, oxidized LDL, inducible nitric oside synthase,

copper ion
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Microglia cultures were prepared from the
spinal cords of 7-days Wistar rat.

lDisruption

Cells were plated on 75-cm? culture flasks and kept in
RPMI1640 medium,containing 10% FBS.

¢ 8 days

Experiment 1.

Microglia were removed by shaking for the first time.

7-day old ratj

Experiment 2.
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Microdlia were retghved by shalir@ for th\second time.
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Experiment 3. €——
Figure 1. Rat prin

Microgolia weﬁe rﬁmaved b%.shaflzing for the third time.
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Figure 2. The pr | (Panel B) were
harvested from flasf g 1or 2 hr. Cellswere
collected by centrifugation and seeded at 5x10* cells/ml. The attached cells (Panel C)
were observed after last collection. The collective cells were further cultured in
RPMI-1640 supplemented with 100% FBS for 1 day. Cells (5x10* cells/ml) were
incubated with indicated oxidized LDL for activation.

(A)

Human LDL isolation

v

Sequential density gradient ultracentrifugation
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(B)

LDL oxidation
Cu™ Fe'™ Air
37°C 37°C 37°C  37°C  37°C 37°C
6 hr 24 hr 6 hr 12hr 24 hr 20 hr

: | : _
Figure 3. Human LDL pregparation and dlfferent2g|>@ dation
24 hr 24 hr
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Figure 4. Effects of different oxidized LDL on rat microglial cell viability.
Microglia (5x10* cells/ml/well) were treated with oxidized LDL (Cu™- or
Fe""-catalyzed LDL for 6 h with dialyzation, D, 50 or 100 pg/ml) for 22.5
hours, then added MTT to medium (final concentration, 0.5 mg/ml) to
medium. After 1.5 hours, cells were washed and dissolved with DM SO.
Using the spectrophotometric method by ELISA reader to anayze the
absorbance at 550 nm. Percentage of cell viability was calculated as the
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Figure 5. Effects of different oxidized LDL on rat microglial cell viability.
Microglia (5x 10" cells/ml/well) were treated with oxidized LDL
(Fe™-catalyzed LDL for 24 h with or without diayzation, D/ND, 50 or
100 pg/ml) for 225 hours, then added MTT to medium (fina
concentration, 0.5 mg/ml) to medium. After 1.5 hours, cells were washed
and dissolved with DMSO. Using the spectrophotometric method by
ELISA reader to anayze the absorbance at 550 nm. Percentage of cdll
viahility was calculated as the absorbance of treated cells/control cellsx

100.
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Figure 6. Effects of different oxidized LDL on rat microglial cell viability.
Microglia (5x 10" cells/ml/well) were treated with oxidized LDL
(Fe™-catalyzed LDL for 48 h with or without diayzation, D/ND, 50 or
100 pg/ml) for 225 hours, then added MTT to medium (fina
concentration, 0.5 mg/ml) to medium. After 1.5 hours, cells were washed
and dissolved with DMSO. Using the spectrophotometric method by
ELISA reader to anayze the absorbance at 550 nm. Percentage of cdll
viahility was calculated as the absorbance of treated cells/control cellsx

100.
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Figure 7. Effects of different oxidized LDL on rat microglial cell viability.
Microglia (5x10* cells/ml/well) were treated with oxidized LDL (Cu™- or
Fe"*-catalyzed LDL for 24 h without dialyzation, ND, 50 or 100 pg/ml)
for 22.5 hours, then added MTT to medium (final concentration, 0.5
mg/ml) to medium. After 1.5 hours, cells were washed and dissolved with
DMSO. Using the spectrophotometric method by ELISA reader to
anayze the absorbance at 550 nm. Percentage of cell viability was
calculated as the absorbance of treated cells/control cellsx100.
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Figure 8. Effect of different oxidized LDL on nitrite production in rat
microglial cells. Microglia (5x10* cells/ml/well) were treated with vehicle
or oxidized LDL (Fe"-catalyzed LDL at 37  for 24 h with or without
dialyzation, D/ND, 50 or 100 pg/ml) for 24 hr. Cell-free supernatant were
assayed for nitrite production (Griess's method) and cellular lysates were
anayzed for INOS expression. LPS (50 ng/ml) was added as positive

control.
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Figure 9. Effect of different oxidized LDL on nitrite production in rat
microglial cells. Microglia (5x10* cells/ml/well) were treated with vehicle
or oxidized LDL (Cu™- or Fe""-catalyzed LDL at 25
dialyzation, ND, 50 or 100 pg/ml) for 24 hr. Cell-free supernatant were
assayed for nitrite production (Griess's method) and cellular lysates were
anayzed for iNOS expression. LPS (50, 100 or 200 ng/ml) was added as

positive control.
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Figure 10 Effect of different oxidized LDL on nitrite production in rat
microglial cels. Microglia (5x10* cellgml/well, 5% FBS) were treated
with vehicle or oxidized LDL (Cu™- or Fe""-catalyzed LDL at 37  for
12 h without dialyzation, ND, 50 or 100 pug/ml) for 24 hr. Cell-free
supernatant were assayed for nitrite production (Griess's method) and
cellular lysates were analyzed for iINOS expression. LPS (50 or 100 ng/ml)

was added as positive control.
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Figure 11. Effect of different oxidized LDL on nitrite production in rat
microglial cells. Microglia (5x10* cells/ml/well) were treated with vehicle
(e ) or oxidized LDL (Fe-catalyzed LDL at 37 for 24 h with
dialyzation, 50 (v) or 100 ( ) pg/ml) for 24 hr. Cell-free supernatant
were assayed for nitrite production (Griess's method) and cellular lysates
were analyzed for iNOS expression. LPS (50 ng/ml, o ) was added as

positive control.
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Figure 12. Effect of different oxidized LDL on nitrite production in rat
microglial cells. Microglia (5x10* cells/ml/well) were treated with vehicle
(e ), native LDL (50 or 100 pg/ml, o or v) or oxidized LDL
(Cu™*-catalyzed LDL at 37  for 24 h without dialyzation, 50 (O ) or 100
( ) pg/ml or Fe™-catalyzed LDL, 50 ( ) or 100 (m ) pg/ml) at 37

for 24 h without dialyzation for 24 hr. Cell-free supernatant were assayed
for nitrite production (Griess's method) and celular lysates were
anayzed for iINOS expression. LPS (50 or 100 ng/ml, or A) was

added as positive control.
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Figure 13. Effect of oxidized LDL or copper on nitrite production in rat
microglial cells. Microglia (5x10* cells/ml/well) were treated with vehicle
(Resting), oxidized LDL (Cu™*-catalyzed LDL at 37  for 24 h without
dialyzation, ND, 50 or 100 pg/ml) or copper for 24 hr. Cell-free
supernatant were assayed for nitrite production (Griess's method) and
cellular lysates were analyzed for INOS expression. LPS (100 ng/ml) was

added as positive control.
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Figure 14. Effect of various inhibitors on copper-catalyzed LDL-induced
nitrite production. Microglia (5x10* cells/ml/well) were treated with
solvent control (0.1% DMSO) or various inhibitors (LY 294002, PD98059
or SB203580, 5 uM) for 15 min followed by the addition of oxidized
LDL (Cu™-catalyzed LDL at 37 for 24 h without dialyzation, 50 or
100 pg/ml) for 24 hr. Cell-free supernatant were assayed for nitrite
production (Griess's method). LPS (50 ng/ml) was added as positive

control.
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Figure 15. Effect of different oxidized LDL on iNOS expression in rat
microglial cells. Cells were treated with either a solvent control or
oxidized LDL (Cu™-catalyzed LDL a 37 for 24 h or 6 hr with
diayzation, 50 or 100 pug/ml) for 24 hr. LPS (50 ng/ml) was added as
positive control. The cellular lysates were analyzed for iNOS expression
by Western blotting.
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Figure 16. Effect of different oxidized LDL on iNOS expression in rat
microglial cells. Cells were treated with either a solvent control or
oxidized LDL (Fe™-catalyzed LDL a 37 for 6 h or 24 hr with
dialyzation, 50 or 100 pg/ml) for 24 hr. LPS (50 ng/ml) was added as
positive control. The cellular lysates were analyzed for iINOS expression
by Western blotting.
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Figure 17. Effect of different oxidized LDL on iNOS expression in rat
microglial cells. Cells were treated with either a solvent control or
oxidized LDL (Air-catalyzed LDL a 37 for 20 h or 6 hr with
diayzation, 50 or 100 pug/ml) for 24 hr. LPS (50 ng/ml) was added as
positive control. The cellular lysates were analyzed for iNOS expression
by Western blotting.
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Figure 18. Effect of different oxidized LDL on iINOS expression in rat
microglial cells. Cells were treated with either a solvent control or
oxidized LDL (Cu™- or Fe™-catalyzed LDL at 37 for 24 h without
dialyzation, 50 or 100 pg/ml) for 24 hr. LPS (50 or 100 ng/ml) was added
as positive control. The celular lysates were anayzed for iINOS

expression by Western blotting.



\\\?’;r

Lo

Banati, R.B., Gehrmann, J.,, Schubert, P. Kreutzberg, GW. (1993)
Cytotoxicity of microglia. Glia7: 111-118.

Bright, JJ., Natargan, C., Sriram, S., Muthian, G (2004) Signaling

through JAK2-STATS pathway is essential for |L-3-induced activation
of microglia. GLIA. 45: 188-196.

Chen, P, Goldberg, D.E., Kolb, B., Lanser, M., Benowitz, L.I. (2002)
Inosine induces axonal rewiring and improves behavioral outcome
after stroke. Proc. Natl. Acad. Sci. USA 99: 9031-6.

Connally, E.S. J, Winfree, C.J., Springer, T.A., Naka, Y., Liao, H., Yan,
S.D., Stern, D.M., Solomon, R.A., Gutierrez-Ramos, J.C., Pinsky,
D.J. (1996) Cerebral protection in homozygous null ICAM-1 mice
after middle cerebral artery occlusion. Role of neutrophil adhesionin
the pathogenesis of stroke. J. Clin. Invest. 97: 209-16.

Darndl, JE., J, Kerr, .M., Stark, GR. (1994) Jak-STAT pathways and
transcriptional activation in response to IFNs and other extracellular
signaling proteins. Science. 264 1415-1421.

Dickson, D.W., Lee, S.C., Mattiace, L.A., Yen, S.C., Brosnan, C. (1993)
Microglia and cytokines in neurological disease with special
reference to AIDS and Alzheimer’s disease. Glia 7: 75-83.

Emsley, H.C., Tyrrell, PJ. (2002) Inflammation and infection in clinical
stroke. J. Cereb. Blood Flow Metab. 22: 1399-1419.

Kim, O.S,, Park, E. J., Joe, E.H., Jou, |. (2002) JAK-STAT signaling
mediates gangliosides-induced inflammatory responses in brain
microglia cells. J.B.C. 277: 40594-4060L1.

Laaksonen, R., Janatuinen, T., Vesalainen, R., Lehtimaki, T., Elovaara, 1.,



Jaakkola, O., Jokela, H., Laakso, J.,, Nuutila, P, Punnonen, K.,
Raitakari, O., Saikku, P, Saminen, K., Knuuti, J. (2002) High
oxidized LDL and elevated plasma homocysteine contribute to the
early reduction of myocardia flow reserve in healthy adults. Eur. J.
Clin. Invest. 32: 795-802.

Lindholm, D., Castren, E., Kiefer, R., Zafra, F., Thoenen, H. (1992)
Tarnsforming growth factor-beta 1 in the rat brain: increase after
injury and inhibition astrocyte proliferation. J. Cell Biol. 117:
395-400.

Maziere, C., Alimardani, G, Dantin, F., Conte, M.A., Maziere, J.C. (1999)
Oxidizes LDL activates STAT1 and STAT3 transcription factors:
possible involvement of reactive oxygen species. FEBS Lett. 448:
49-52.

Maziere, C., Conte, M.A., Maziere, J.C. (2001) Activation of JAK2 by
the oxidative stress generated with oxidized low-density lipoprotein.
Free Radic. Biol. Med. 31: 1334-1340.

Newcombe, J., Li, H., Cuzner, M.L. (1994) Low density lipoprotein
uptake by macrophages in multiple sclerosis plagues. implications
for pathogenesis. Neutopathol Appl. Neurobiol. 20: 152-162.

Park, E.J., Park, S.Y., Joe, E., Jou, |. (2003) 15d-PGJ, and rosiglitazone
suppress janus kinase-STAT inflammatory signaling through
induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3
in glia. The Journal of Biological Chemistry. 278: 14747-14752.

Parkinson, J.F., Mitrovic, B., Merrill, J.E. (1997) The role of nitric oxide
in multiple sclerosis. J. Mol. Med. 75: 174-186.

Simon, A.R., Rai, U., Fanburg, B.L., Cochran, B.H. (1998) Activation of



the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol.
275: C1640-C1652.

Streit, W.J., Kreutzberg, GW. (1988) Response of endogenous glial cells
to motor neuron degeneration induced by toxic ricin. J. Comp.
Neurol. 268: 248-263.

Svengjo, E., Boschcov, P, Ketelhuth, D.F., Jancar, S., Gidlund, M. (2003)
Increased microvascular permeability in the hamster cheek pouch
induced by oxidized low fensity lipoprotein (oxLDL) and some
fragmented apolipoprotein B proteins. Inflamm. Res. 52: 215-220.

Thery, C., Chamak, B., Mallat, M. (1991) Free radical killing of neurons,
Eur. J. Neurosci. 3: 1155-1164.

Tsimikas, S., Bergmark, C., Beyer, RW., Patel, R., Pattison, J., Miller, E.,
Juliano, J., Witztum, JL. (2003) Tempora increases in plasma
markers of oxidized low-density lipoprotein strongly reflect the
presence of acute coronary syndromes. J. Am. Coll. Cardiol. 41:
360-370.

Uno, M., Kitazato, K.T., Nishi, K., Itabe, H., Nagahiro, S. (2003) Raised
plasma oxidised LDL in acute cerebral infarction. J. Neurol.
Neurosurg. Psychiatry. 74. 312-316.

Zhang, X., Blenis, J, Li, H. (1995 Require ment of serine
phosphorylation for formation of STAT-promoter complexes.
Science. 267: 1990-1994.



